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Supplementary Note 1: Rephasing and nonrephasing 2d maps 

In collinear 2DES, rephasing and nonrephasing signals can be obtained separately by phase 
cycling1–3. The rephasing 2d maps of 1L-MoSe2 at different T are in Fig. 2a in the main text, 
Supplementary Fig. 1 plots the nonrephasing 2d maps at different T. All the rephasing and 
nonrephasing 2d maps are normalized to the maximum absolute value of the real part of the 
rephasing maps at T = 500 fs.  

In order to better understand the origin of the coherent oscillations in the measured 2d 
maps, we summarize some properties of double-sided Feynman diagrams4. We show exemplary 
Feynman diagrams for a three-level system (i.e., without vibrational sublevels within electronic 
states) of rephasing and nonrephasing pathways for population-detected 2DES (Supplementary 
Fig. 2, measuring fluorescence in collinear geometry) as well as for conventional coherence-
detected 2DES (Supplementary Fig. 3, obtained in partially non-collinear geometry). The 
vertical lines represent time evolution of ket (left) and bra (right) states of the density matrix 
with time running from the bottom to the top. Every pulse induces an impulsive transition of 
the system within the density-matrix description4, depicted by a solid arrow. An arrow pointing 
towards the quantum states in the middle increases the respective electronic quantum number, 
an arrow pointing away decreases it (|g⟩ denotes the ground state, |e⟩ the first excited state, and 
|f⟩ the second excited state). Between two impulsive transitions, the system either remains in a 
population state (identical bra and ket states) or propagates in a coherent state (different bra and 
ket states)4. The sign of the signal of a specific Feynman pathway (labeled on the top of the 
Feynman diagram) depends on the number of interactions from the right side of the Feynman 
diagram, wherein each interaction leads to multiplication by -1 of the signal4. 

In all cases, the system is in a coherent state between the first and the second pulse and 
between the third and the fourth, i.e., the bra and ket states are different from each other. We 
call the associated time intervals excitation time (or first coherence time) τ and detection time 
(or second coherence time) t. Two-dimensional Fourier transformation with respect to these 
two coherence times results in a 2d map with the two axes of excitation frequency ωτ (or energy 
ћωτ) and detection frequency ωt (or energy ћωt)4. 

The sign of the frequency of a coherent state |X⟩⟨Y|  is defined, without loss of 
generality, to be positive if level |X⟩ is higher in energy than level |Y⟩, and negative if level |X⟩ 
is lower. The exemplary Feynman diagrams reveal that, in the rephasing pathways, the coherent 
state evolution during τ is associated with a negative frequency, because the first interaction 
with a light field occurs from the right side, bringing the bra state from ⟨g| to ⟨e|, while the 
coherent state during t evolves with positive frequency, because, in that case, the ket state has 
higher energy than the bra state. The different sign for the temporal evolution in the two 
coherence times is the reason why this is called the “rephasing” signal, since the phase evolution 
during the first period is reversed in the second. Therefore, in rephasing maps, ћωτ assumes 
negative values4. By contrast, in nonrephasing pathways, the coherent states during both τ and 
t have positive frequencies. 

We now consider the differences between the two types of 2DES from the Feynman 
diagrams in Supplementary Figs. 2,3. For the population-detected approach (Supplementary 
Fig. 2), there are four impulsive transitions, generating an excited population state (i.e., identical 
bra and ket states), followed by spontaneous emission of fluorescence. For the coherence-
detected approach (Supplementary Fig. 3), three laser pulses are used to create a third-order 
polarization (i.e., different bra and ket states) which emits a coherent signal in the phase-
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matched direction. Therefore, when measuring rephasing and nonrephasing 2d maps, 
population-detected 2DES probes fourth-order nonlinear signals, whereas in the coherence-
detected geometry one records the third-order response of the system. The apparent discrepancy 
in the nonlinearity comes about because in the standard formulation of coherence-detected 
2DES the light field is treated classically and the final interaction (dashed arrows) is not counted 
towards the order of nonlinear response4. Third-order coherently detected 2d spectra and fourth-
order population-detected ones can both be described with one and the same underlying 
generalized fourth-order response function, discussed in Ref. 5. 

 
Supplementary Figure 1: Nonrephasing 2d maps (real parts) at different T. 

In coherence-detected 2DES there are three types of Feynman pathways4 contributing 
to rephasing and nonrephasing signals, named ground-state bleach (GSB), stimulated emission 
(SE), and excited-state absorption (ESA), as labeled in Supplementary Fig. 3, wherein the GSB 
and the SE pathways have positive sign, and the ESA negative. Conversely, in population-
detected 2DES, the GSB and SE signals are negative (Supplementary Fig. 2), since there is 
always one more interaction from the right side compared to the coherence-detected variant. 
For the ESA signal of population-detected 2DES maps, two pathways exist (ESA 1 and ESA 
2) ending up in |e⟩⟨e| and |f⟩⟨f| excited population states6. If the system arrives at the |f⟩⟨f| 
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state, fast internal conversion will lead to the |e⟩⟨e| state before spontaneous emission can occur 
(Kasha’s rule7). Hence, ESA 1 and 2 have the same intensities, but opposite signs, under the 
condition of a unity quantum efficiency for the internal conversion process from |f⟩⟨f| to |e⟩⟨e| 
(i.e., if all the population of the |f⟩⟨f| state is transferred to the |e⟩⟨e| state). This results in a 
cancellation between the two ESA pathways in population-detected 2DES6. Such a cancellation 
is fulfilled here because, if ESA 2 would not fully cancel ESA 1, a left-over ESA signal would 
appear on the 2d maps at ћωτ = ћωeg and ћωt = ћωfe, where ћωeg (ћωfe) is the transition energy 
between |g⟩ and |e⟩ (|e⟩ and |f⟩). Thus, henceforth all the ESA pathways are neglected. For 
molecular systems, the situation may be different, and one has to include a suitable less-than-
unity quantum efficiency parameter and take into account ESA pathways6,8,9. 

 

Supplementary Figure 2: Typical Feynman diagrams (without considering sublevels within electronic 
states) of rephasing (top row) and nonrephasing (bottom row) pathways in population-detected 2DES. 
There are four types of Feynman pathways contributing to rephasing and nonrephasing signals, named 
ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) 1 and 2. 

Supplementary Note 2: Absorptive 2d maps and linewidth analysis 

Upon Fourier transformation, both rephasing and nonrephasing signals have dispersive 
contributions4. In order to compare to static or transient absorption spectra, 2d rephasing and 
nonrephasing maps are normally summed up to cancel the dispersion and obtain an absorptive 
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lineshape4, as illustrated in Supplementary Fig. 4. The resulting absorptive 2d maps at different 
T are in Supplementary Fig. 5, normalized to the maximum absolute value at T = 500 fs. 

 

Supplementary Figure 3: Typical Feynman diagrams (without considering sublevels within electronic 
states) of rephasing (top row) and nonrephasing (bottom row) pathways in conventional coherence-
detected 2DES. There are three types of Feynman pathways contributing to rephasing and nonrephasing 
signals, named ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption 
(ESA). 

Absorptive 2d maps simplify the interpretation and allow direct comparison with 
traditional transient absorption spectroscopy4. For studying the origin of coherent oscillations 
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as a function of T, it is preferable to analyze separately the amplitude evolutions in the rephasing 
and nonrephasing maps, because they display different oscillating behaviors for diagonal versus 
cross peaks. The summation of rephasing and nonrephasing signals will mix these different 
oscillations and obscure the analysis10. 

 

Supplementary Figure 4: Schematic real parts of a, rephasing, b, nonrephasing, and c, absorptive 2d 
maps in the case of a single relevant transition. Both rephasing and nonrephasing signals have dispersive 
contributions. The summation of their real parts can remove the dispersion, resulting in a purely 
absorptive map. 
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Supplementary Figure 5: Absorptive 2d maps at different T normalized to the maximum at T = 500 fs. 

In the absorptive 2d maps (Supplementary Fig. 5), the linewidth of the peak along the 
diagonal direction oscillates with T (Supplementary Fig. 6a, black curve). The orange curve in 
Supplementary Fig. 6a is the diagonal linewidth of the rephasing maps (the same curve as in 
Fig. 2b in the main text), which shows the same trend as the black curve, indicating that there 
are multiple diagonal components. The amplitudes of these components oscillate, yet not in 
phase. Supplementary Figs. 6b (6c) show the absorptive map at T = 250 fs (1500 fs). By 
comparing the linewidth in diagonal direction (Supplementary Fig. 6d, solid red line for T = 
250 fs and solid green line for T = 1500 fs), we find that at 1500 fs the amplitudes of components 
1 and 3 drop to zero, leaving only component 2, due to the out-of-phase oscillation. 
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Supplementary Figure 6: a, FWHM along diagonal direction as a function of T from Gaussian fitting 
of each time step for the absorptive (black curve) and rephasing (orange curve) 2d maps. b, Absorptive 
2d map at T = 250 fs. c, Absorptive 2d map at T = 1500 fs. d, Slices along diagonal direction for the 2d 
maps of panels b (solid green) and c (solid red), their Gaussian fitting curves (dashed orange and dashed 
green, respectively), as well as the difference of the two Gaussian curves (dotted purple). The gray areas 
mark the estimated ranges of the center positions of components 1 and 3 as labeled.  

Both linewidths are fitted by Gaussians (Supplementary Fig. 6d, dashed orange line for 
T = 250 fs and dashed cyan-blue line for T = 1500 fs). The FWHM of component 2 is 20±8 meV, 
smaller than the FWHM ~50 meV derived from linear absorption at RT11, because the peak 
intensity in 2d maps is proportional to the fourth power of the transition dipole strength1, while 
linear absorption scales quadratically with transition dipole strength4, resulting in a twice-
smaller Gaussian linewidth in 2d maps than in linear ones. The laser spectrum additionally 
modulates the peak shape, and influences the comparison between the linewidth extracted from 
2d maps and absorption spectra.  

The position of component 2 is ~1.611±0.004 eV, as determined from the Gaussian fit 
at T = 1,500 fs, while the approximate positions of components 1 and 3 can be deduced from 
the difference of the two Gaussian fitting functions at T~ 250 and 1,500 fs (Supplementary Fig. 
6d, dotted purple line). The two maximum positions in the difference spectrum are 1.591 and 
1.629 eV. However, in the laser spectrum (Supplementary Fig. 7), there is a structured peak 
with maximum position~1.620 eV. Such a structure will shift the peak positions of different 
components towards the (local) laser peak maximum position (1.620 eV). Thus, the peak of 
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component 1 will be blue-shifted and component 3 red-shifted. For this reason, we cannot 
obtain precise center positions of components 1,3 just from maximum peak positions. We 
estimate their range by setting 1.591 eV (1.629 eV) as the upper (lower) limit of the position of 
component 1 (component 3), and the position at half the maximum on the low-energy (high-
energy) side as the lower (higher) limit. The estimated ranges of the two components are marked 
by gray areas in Supplementary Fig. 6c. The energy splitting between components 1 and 2 falls 
in the range ~20–35 meV and, between 2 and 3, in the range ~18–33 meV. The estimated center 
positions of the diagonal peaks of components 1 and 3 are determined by taking the mid-point 
of each range, which are (ћωτ, ћωt) = (1.584 eV, 1.584 eV) and (1.637 eV, 1.637 eV), 
respectively, and the estimated center position of the diagonal peak of component 2 [(ћωτ, ћωt) 
= (1.611 eV, 1.611 eV)], marked by purple crosses in Fig. 2a of the main text and in 
Supplementary Fig. 6. 

 

Supplementary Figure 7: Laser spectrum, with a structured peak with a maximum at 1.620 eV (dashed 
vertical line). 

Supplementary Note 3: Exclusion of sixth-order signal 

We perform a 27-step (1×3×3×3) phase-cycling scheme, whereby not only the time delays 
between the four laser pulses, but also the phases of individual pulses are scanned. The PL 
signal is proportional to the final excited-state population (where we may exclude ESA 
pathways as explained in Supplementary Note 1) resulting from all possible Feynman 
pathways, which can be described as1: 

𝑝(𝜑!, 𝜑", 𝜑#, 𝜑$) = ∑ 𝑝0(&)(,*,+,, (𝛼, 𝛽, 𝛾, 𝛿)exp[𝑖(𝛼𝜑! + 𝛽𝜑" + 𝛾𝜑# + 𝛿𝜑$)], (1) 

where φ1, φ2, φ3, φ4, are the phases associated with the four excitation pulses and	𝑝0(&) denotes 
the nth-order contribution. The summation is carried out over integers α, β, γ, δ within a range 
of −∞ to +∞ for each parameter, subject to the condition: 

𝛼 + 𝛽 + 𝛾 + 𝛿 = 0. (2) 
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A parameter combination [α, β, γ, δ] defines one specific nonlinear signal. E.g., [-1, 1, 
1, -1] defines the fourth-order rephasing and [1, -1, 1, -1] the nonrephasing signal. To extract 
the signal with a specific contribution of [α, β, γ, δ] we take a discrete Fourier transform1: 

𝑝0(&)(𝛽, 𝛾, 𝛿	) =
1

𝐿𝑀𝑁C CC𝑝(𝑙 ∙ ∆𝜑"!, 𝑚 ∙ ∆𝜑#!, 𝑛 ∙ ∆𝜑$!)
-.!

/01

2.!

301

4.!

&01

 

																													× exp[−𝑖(𝑙𝛽 ∙ ∆𝜑"! +𝑚𝛾 ∙ ∆𝜑#! + 𝑛𝛿 ∙ ∆𝜑$!)], (3) 

where L = 3, M = 3, N = 3, are the numbers of steps we scan within a 2π range for the phase of 
each pulse, and Δφ21, Δφ31, Δφ41 are the increments of the phase steps. In Supplementary 
Equation 3, α is missing because in the 1×3×3×3 phase-cycling scheme we fix φ1 = 0, since the 
signal only depends on relative phase, i.e., 𝜑5! = 𝜑5 − 𝜑!, for i = 2, 3, 4. 

In principle, 27-step phase cycling cannot exclude sixth-order signals. When extracting 
the desired fourth-order rephasing signal, we also obtain four types of sixth-order signals at the 
same time. They arise from combinations of [α, β, γ, δ] as1: 

𝛼 = +2, 𝛽 = −2, 	𝛾 = +1, 𝛿 = −1, (4) 

𝛼 = −1, 𝛽 = −2, 	𝛾 = +1, 𝛿 = +2, (5) 

𝛼 = +2, 𝛽 = +1, 	𝛾 = −2, 𝛿 = −1, (6)	

𝛼 = −1, 𝛽 = +1, 	𝛾 = −2, 𝛿 = +2.	 (7)	

Similarly, when extracting the desired fourth-order nonrephasing signal, we also obtain four 
types of sixth-order signals at the same time. Their [α, β, γ, δ] combinations are1: 

𝛼 = −2, 𝛽 = +2, 	𝛾 = +1, 𝛿 = −1, (8) 

𝛼 = +1, 𝛽 = +2, 	𝛾 = −2, 𝛿 = −1, (9) 

𝛼 = −2, 𝛽 = −1, 	𝛾 = +1, 𝛿 = +2, (10) 

𝛼 = +1, 𝛽 = −1, 	𝛾 = −2, 𝛿 = +2. (11) 

Although sixth-order signals normally are much weaker than fourth-order ones, as 
predicted by perturbative response function theory12, they might still influence our analysis of 
the oscillating behavior of 2d maps. In order to examine any influence of the sixth-order signal 
overlapping with the fourth-order rephasing and nonrephasing signals, we conduct a separate 
measurement employing 64-step (1×4×4×4) phase cycling for T = 50 fs. This allows us to 
separate the fourth-order rephasing and nonrephasing maps from eight sixth-order signals. The 
resulting absolute-valued 2d maps corresponding to these ten contributions are in 
Supplementary Fig. 8. The rephasing and nonrephasing fourth-order maps (left column) are 
consistent with those measured using 27-step phase cycling. There is no detectable sixth-order 
signal above the noise floor (right four columns) that would overlap with the fourth-order 
signals. Therefore, the oscillations as a function of T, discussed in the main text, arise from 
rephasing and nonrephasing fourth-order pathways without any higher-order signal. 
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Supplementary Figure 8: Absolute-valued 2d maps of ten nonlinear contributions at T = 50 fs with 64-
step phase cycling. [α, β, γ, δ] are labeled on top of the corresponding maps. The top left graph 
corresponds to the fourth-order rephasing signal and the bottom left one to the fourth-order nonrephasing 
one. There is no detectable signal beyond the noise floor for any of the other eight sixth-order nonlinear 
contributions. 

Supplementary Note 4: Reproducibility and noise-level analysis 

The reproducibility of the 2d maps is confirmed by twice repeated 2DES measurements. The 
top two rows of Supplementary Fig. 9 show the rephasing 2d maps for T = 50, 500, 1000 fs 
measured on two different experimental runs (labeled A for the first and B for the second row) 
for ~20 μJ/cm2. The 6 maps are all normalized to the maximum absolute value of the real part 
of the upper rephasing map for T = 50 fs. The evolution of the peak shape with T is consistent 
for the two measurements. The difference maps of A and B (third row of Supplementary Fig. 
9) show only background noise, indicating that the contributing signals reproduce each other, 
thus cancelling each other in the difference.  

The reproducibility can be better illustrated by comparing the amplitude evolutions of a 
representative pixel (marked by the green diamond in the upper left panel of Fig. 2a of the main 
text) as a function of T for the two measurements (Supplementary Fig. 10). The green curve 
(the first run) and the blue curve (the second run) agree with each other. 

The difference map between two measurements for the same T provides a way to 
evaluate the noise level, by evaluating the standard deviation (SD) of the data. However, this 
inherits the noise from both maps, hence we need to estimate correctly the signal-to-noise ratio 
of each individual map. 

Supplementary Figs. 11a,b are zoomed-out rephasing maps for T = 50 fs, corresponding 
to the data sets in the first column of Supplementary Fig. 9. We analyze separately the noise 
level of each map by evaluating SD outside the signal region marked by the dashed orange box, 
yielding 0.0745 and 0.0788 for panels a and b, respectively.  
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Supplementary Figure 9: Reproducibility of rephasing 2d maps at T = 50, 500, 1000 fs. The row 
labeled A contains a first and row B a second set of measurements. The evolution of peak shape with 
respect to T is consistent for the two measurements. Row A-B contains the difference between A and B. 
The signals largely cancel, leaving only background noise. 

 

Supplementary Figure 10: Reproducibility of time traces for the same position within the rephasing 
2d maps measured in two repeated runs. The error bars are evaluated by calculating the fluctuations 
within a region containing background noise. 

The difference map is in Supplementary Fig. 11c. SD inside the dashed orange box of 
the difference map is 0.0686, close to the calculated SD from panels a, b outside of the orange 
box. The agreement between SD from the outside-box region in panels a, b and from the inside-
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box region in panel c indicates that the noise is evenly distributed. Thus, the SD calculated 
outside the signal region can be used to evaluate the fluctuation ranges of the measured 
amplitude for each single pixel in the signal region. For each T, we separately extract SD, and 
use it to create an error bar for the corresponding T step in the amplitude evolution curves in 
Supplementary Figs. 10,12 and Fig. 2c of the main text. 

 

Supplementary Figure 11: Noise-level analysis. a,b, Zoomed-out rephasing 2d maps at T = 50 fs of 
the first column of Supplementary Fig. 9 for (a) row A and (b) row B. The dashed orange boxes mark 
the signal regions in the two maps. c, Difference between panels a and b. 

Supplementary Note 5: Exclusion of biexciton signal 

Biexcitons have a binding energy ~20 meV13–15. In view of the Feynman-pathway analysis of 
Supplementary Figure 2, biexcitons can only be detected through excited-state absorption 
(ESA) pathways in a 2d spectroscopy measurement, meaning that they appear in 2d maps as a 
peak outside the diagonal and at lower probe energies (~20 meV) compared to the neutral 
exciton13. This should correspond to a strongly asymmetric lineshape towards the red (low 
detection frequency ωt) in the absorptive 2d maps. We do not observe this, indicating that the 
effect of biexcitons is negligible in our experiments at room temperature. 

The following two factors could explain this: 1) The binding energy of the neutral 
biexciton is an order of magnitude lower than the exciton binding energy16,17. Thermal 
fluctuations make biexcitons unstable, and lead to biexciton dissociation at RT. Therefore, upon 
laser excitation, even if some biexcitons are present at RT, we expect their spectral signal to be 
much weaker than the single neutral exciton. 2) As discussed in Supplementary Note 1, in 
population-detected 2d spectroscopy, the two types of excited-state absorption (ESA) 
pathways, i.e., ESA 1 and ESA 2, usually cancel each other to some extent (depending on their 
associated fluorescence quantum yields), leading to a reduction of ESA signal, hence a further 
reduction of the contribution from biexcitons.  



14 
 

Supplementary Note 6: Extracting the oscillation period 

 

Supplementary Figure 12: a, Fitted oscillating curve (solid purple). b, Representative sinusoidal 
curves with varied oscillation periods of 133 fs (dotted) and 139 fs (dashed) yielding significant 
deviations with respect to the measurements, thus demonstrating the accuracy of the fitting of panel a. 
The error bars are evaluated by calculating the fluctuations within a region containing background noise 
(Supplementary Note 4). 

To extract the oscillation period from the amplitude evolution curve (shown in Fig. 2c in the 
main text), we fit it using a sine function: 

Y = 𝐴	sin P"6(7.7!)
8

Q	, (12) 

with amplitude A, phase x0, and period 𝑤  restricted to ~118–230 fs (as obtained from the 
positions of the constituent components). An oscillation period w~136 fs is obtained from the 
fitting. Supplementary Fig. 12a shows the fitting results, where the measured data are plotted 
as red circles with error bars. The purple curve is obtained by taking only those time points (50, 
250, 500, 750, 1000, 1250, 1500, 1750, 2000 fs) at which 2d maps are measured, and connecting 
the values obtained from the fitting function by straight line segments. The accuracy of the 
extracted period is checked by varying it and comparing the resulting curves with the data. As 
shown in Supplementary Fig. 12b, if we change the period to either 133 fs (dotted purple line) 
or 139 fs (dashed purple line), the curves deviate strongly from the data, from which we derive 
the ±2 fs error of the main text. 

Supplementary Note 7: Definition of Huang–Rhys factor S 

We consider an electronic (or excitonic) ground state |g⟩ and an electronic (or excitonic) 
first excited state |e⟩. Using a harmonic oscillator to approximate the dependence of potential 
energy on a vibrational (phonon) dimensionless coordinate q with the ground-state minimum 
at q = 0 [12], 

𝑉9(𝑞) =
ℏ;
"
𝑞", (13) 

the potential curvature leads to a vibrational level spacing of ℏ𝜔, where 𝜔 is the phonon angular 
frequency, creating sublevels |g<⟩, i = 0, 1, 2, …. For full information on the system, we also 
need to describe the excited-state potential12, 
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𝑉=(𝑞) = ℏ𝜔=9 +
ℏ;
"
(𝑞 + 𝑑)", (14) 

in which we assume, for simplicity, the same curvature, thus the same ℏ𝜔 as in the ground state, 
a (vertical) energy difference ℏ𝜔eg, and a (horizontal) shift along the phonon coordinate that 
can be formulated in a dimensionless way, d, between the two potential minima. This generates 
sublevels |e<⟩, i = 0, 1, 2, …. Substituting Supplementary Equation 13 into Supplementary 
Equation 14 leads to 

𝑉= = ℏ𝜔=9 + 𝑉9 + ℏ𝜔𝑆 + ℏ𝜔𝑞𝑑, (15) 

where 𝑆 = 𝑑"/2 is the Huang–Rhys factor, and ℏ𝜔𝑆 is the reorganization energy. 

Supplementary Note 8: Peak position of individual Feynman pathways 

The peak position along the (horizontally displayed) ℏ𝜔> excitation energy axis can be found 
by evaluating the energy difference between the states of the coherence created after the first 
light-field interaction. E.g., considering pathway 1, the first coherence created (and evolving 
with 𝜏) is |g1⟩⟨e1|. According to Fig. 3a of the main text (black arrow), this is located at the 
intermediate of the three possible transition energies for the excitation, i.e., at ℏ𝜔>, where the 
minus sign in Fig. 3e of the main text arises from the definition of sign of the frequency of a 
coherent state (a coherent state |X⟩⟨Y| has positive frequency when level |X⟩ is higher in energy 
than level |Y⟩ and negative frequency if level |X⟩ is lower than |Y⟩, see Supplementary Note 1). 
Likewise, the coherence after the third interaction (and evolving with t) is |e1⟩⟨g!|, at the lowest 
of the 3 transition energies ℏ𝜔! for the detection, according to the blue arrow in Fig. 3a of the 
main text with positive sign because |e1⟩ is higher than |g!⟩. All other peaks are assigned in a 
similar way, so that the displayed pattern emerges. 

Supplementary Note 9: 2d beating maps for different S values 

Supplementary Figure 13 contains simulated 2d beating maps for various S, a subset of which 
is shown in Fig. 4a of the main text. The lowest contour lines of the experimental and the 
simulated beating maps in Figs. 4a,b of the main text and Supplementary Figure 13 show some 
“jagged” behaviour. There are several factors that could contribute to this. 1) The measurement 
uncertainty arising from noise becomes more visible at the lowest contour line for any given 
signal-to-noise level, leading to deviations from an ideal elliptical shape. 2) The energy 
resolution is given by the temporal scanning range and is ~40.6 meV. Using additional four-
fold zero padding, one pixel has a side length ~10 meV, corresponding to 20 frequency pixels 
in the spectral ranges displayed in Fig. 4 of the main text, along either frequency axis. Thus, 
any (random) deviation, due to noise, in just one or two neighbouring independent frequency 
intervals will lead to a “jagged” outline of the respective contour line, because there are only 
few points that make up any such line. 3) The beating maps represent cuts through a three-
dimensional Fourier space for a particular wT. However, the experimental scanning procedure 
sets a finite resolution along the wT direction, and any beating contribution has a finite width 
along this axis. Thus, it is possible that contributions from several different beating frequencies 
overlap at any given wT. If different beating contributions are located at different (wt, wt), their 
interference can lead to a more complex appearance of the beating map for any particular wT 
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cut position. 4) The spectra are influenced by the shape of the excitation laser spectrum. If this 
spectrum deviates from a perfectly smooth function (such as a Gaussian), this will introduce 
additional structure. For optimal comparison between theory and experiment, we use the 
experimental spectrum also for simulations, thus jagged contour lines can emerge even in 
simulations without noise. 

 

 

Supplementary Figure 13: Simulated 2d beating maps for –ωB (left side in each double column) and 
+ωB (right side in each double column) and for different S values. 

Supplementary Note 10: Sample temperature during 2DES measurement 

Heating the sample through laser irradiation during the experiment may cause thermal 
instabilities or damage. In addition, sample temperature is a decisive factor for calculating the 
2d beating maps, because it determines the distribution of the initial population of the ground 
and excited vibrational states. We estimate the sample temperature during the 2DES 
measurements by adapting the two-temperature model18, for the coupling of electronic and 
vibrational degrees of freedom in solids. This describes the energy transfer inside a material 
with two coupled generalized heat conduction equations for the temperature of the electrons Te 
and the lattice Tl, 

𝑐=
?@"(A,B)

?B
= 𝑘=

?#@"(A,B)
?A#

− 𝛼[𝑇=(𝑟, 𝑡) − 𝑇/(𝑟, 𝑡)] + 𝜎 ∙ 𝐼(𝑟, 𝑡),    (16) 

𝑐/
?@$(A,B)
?B

= 𝑘/
?#@$(A,B)
?A#

+ 𝛼[𝑇=(𝑟, 𝑡) − 𝑇/(𝑟, 𝑡)] − 𝛽[𝑇/(𝑟, 𝑡) − 𝑇C],   (17) 
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where r is a spatial lateral coordinate, t the time, ce and cl are the electron and lattice volumetric 
heat capacities, 𝑘= and 𝑘/ are the electron and lattice thermal conductivities, 𝛼 = 𝑐=/𝜏A is the 
thermal coupling function between electron and lattice subsystems, and 𝜏A the characteristic 
time of electron gas cooling due to energy exchange with the lattice18. 𝛽 characterizes the rate 
of energy exchange between 1L-MoSe2 and substrate. This can be expressed as the product of 
the interfacial thermal conductance ℎD between 1L-MoSe2 and substrate and the laser-irradiated 
area 𝐴. 𝐼(𝑟, 𝑡) is the intensity of the laser beam, 𝜎 is the absorbance of the sample. We set 𝑇C =
300 K, by assuming infinitely fast heat dissipation from the substrate to surrounding areas. 

To simplify the calculation, we ignore transverse thermal diffusion by setting 𝑘= = 𝑘/ =
0, so that the absorbed laser energy is confined in the irradiated volume 𝑉 = 𝐴 ∙ 𝑙 before it is 
transferred to the substrate (𝑙 is the thickness of 1L-MoSe2), and Supplementary Equations (16) 
and (17) reduce to 
𝑐= ∙ 𝑉 ∙

?@"(B)
?B

= −dD"
>%
e ∙ 𝑉 ∙ [𝑇=(𝑡) − 𝑇5(𝑡)] 	+ 𝜎 ∙ 𝐼(𝑡),     (18) 

𝑐5 ∙ 𝑉 ∙
?@&(B)
?B

= dD"
>%
e ∙ 𝑉 ∙ [𝑇=(𝑡) − 𝑇5(𝑡)] − ℎD ∙ 𝐴 ∙ [𝑇5(𝑡) − 𝑇C].   (19) 

To take into account the cumulative effects owing to the high repetition frequency (80 
MHz) of the laser, we consider a multi-pulse heating model19: 

𝐼(𝑡) = ∑ 𝐼1 ∙ 𝑒
.
'()*∙(&,

#

-#EF
&01          (20)  

for the laser intensity irradiating the material, with 𝐼1 representing the peak intensity, w the 
duration of every laser pulse. The time interval 𝑡5 = 12.5 ns between individual pulses is defined 
by the repetition frequency. The integer number n ranges from zero to infinity, so that the 
sample is continuously heated from pulse to pulse. Because the laser power of the 2DES 
measurement is much lower than the damage threshold of the material, we calculate 𝑐= using18: 

𝑐= = 𝛾 ∙ 𝑇=,           (21) 

where g is a proportionality constant that connects the heat capacity of the electron gas with its 
temperature. The values for all parameters in Supplementary Eq. 18–21 are in Supplementary 
Table 1. 

Supplementary Fig. 14a plots the evolution of Te (red curve) and Tl (blue curve) within 
one interval (12.5 ns) between two laser pulses. Upon arrival of the first pulse, Te starts to 
increase since electrons are excited. Then the energy is transferred from electrons to lattice, 
resulting in a subsequent rise of Tl. The lattice finally gives its energy to the substrate because 
of the thermal contact between them, hence Tl decreases. If the interfacial thermal conductance 
ℎD is high enough, Tl will drop back to the initial temperature before the next pulse comes, thus 
the same circle will repeat between any two pulses. On the other hand, if the heat released to 
the lattice does not have time to fully dissipate to the substrate before the next pulse arrives, the 
cumulative effects will lead to an increase of Tl from pulse to pulse until an equilibrium value 
is reached, as shown in Supplementary Fig. 14b, that plots Tl at the arrival time of pulse number 
n (𝑛 = 1, 2, 3, …). Calculations indicate that, for ~3.6×10-14 J used in our 2DES measurements, 
Tl increases from 300 to ~308 K within the first 100 ns, then remains constant. Thus, there is 
no unwanted heating of the sample, thermal instabilities or damage. 
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There are two key assumptions in our calculation. 1) We assume that the absorbed 
energy is confined within the region of the laser focus, and does not diffuse to surrounding 
areas. 2) From a 1–2 orders of magnitude disagreement in the literature on ℎD of TMDs (ranging 
between 0.1 to 14 MW m−2 K−1 [20–22]), we use the minimum in our calculation, so that the 
maximum Tl can be calculated. Because both assumptions overestimate the equilibrium Tl, these 
ensure that the experimental Tl does not exceed the calculated ~308 K, with a negligible heating 
during our measurements.  

Supplementary Table 1: Parameters used in the TTM calculations. 

 Value  Value 

𝒄𝒍 1.87 × 10!	Jm"#K"$ [23] 𝝈 2.5% [24] 

𝑨 5.3 × 10"$%	m& 𝑰𝟎 2.8	W 

𝒍 0.65	nm 𝑻𝒓 12.5	ns 

𝝉𝒓 240 × 10"$'	s [18] 𝒕𝒄 100	fs 

𝒉𝒄 0.1	MWm"&K"$ [21] 𝒘 7.2	fs 

𝜸 67.6 J m-3 K-2 [18]   
  

 

 

Supplementary Figure 14: a, Evolution of the temperature of the electrons Te (red curve) and the 
temperature of the lattice Tl (blue curve) within one interval (12.5 ns) between two laser pulses. b, 
Calculated Tl at the arrival time of pulse n (n = 1, 2, 3, …). 
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Supplementary Note 11: Autocorrelation measured at the sample position 
 

 
Supplementary Figure 15: Measured (dashed red) and simulated (solid black) interferometric 
autocorrelation (IAC) assuming a flat spectral phase and the separately measured laser spectrum. The 
pulse duration of ~12 fs can be obtained  by dividing the FWHM of the Fourier-filtered trace by √2 
(solid blue curve)3. 
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