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S1 THG power dependence

Supplementary Fig.1 plots the experimental power dependence of THG as a
function of incident power in double logarithmic scale. The slope is consistent
with the cubic relation given by Eq.2 in the main text.

S2 TGHE modeling

σ
(3)
ℓℓℓℓ is calculated through a diagrammatic technique, with the light-matter

interaction in the scalar potential gauge in order to capture all intra-, inter-
band and mixed transitions [1–3]. We evaluate the diagram in Supplementary
Fig.2 and denote by Π

(3)
ℓ the response function. n̂ and ĵℓ are the density and

paramagnetic current operators. Then, σ(3)
ℓℓℓℓ = (ie)3 limq⃗→0 ∂

3Π
(3)
ℓ /∂q3ℓ , where

e > 0 is the fundamental charge [2]. The Dirac Hamiltonian of low-energy
carriers in SLG is Hk = ~vF k⃗ · σ⃗ where σ⃗ = (±σx, σy) are the Pauli matrices
in the sublattice basis. Note that ± represent the two valleys in the SLG
Brillouin zone. We get σ(3)

xxxx(ω,EF , 0) = iσ
(3)
0 σ̄

(3)
xxxx(ω,EF , 0) at Te = 0 [1–3]:

σ̄(3)
xxxx(ω,EF , 0) =

17G(2|EF |, ~ω+)− 64G(2|EF |, 2~ω+)|
24(~ω+)4

+
45G(2|EF |, 3~ω+)

24(~ω+)4
(S1)
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Supplementary Fig. 1. THG power dependence. THG power mea-
sured at 3~ω0=1.56eV as a function of the fundamental power measured at
~ω0=0.52eV. The slope∼3 is typical of the THG process, as for Eq.2 of the
main text.

where G(x, y) = ln |(x+ y)/(x− y)|, σ(3)
0 = Nfe

4~v2F/(32π) with Nf = 4 and
~ω+ ≡ ~ω + i0+. At finite Te, σ

(3)
ℓℓℓℓ is evaluated as [4]:

σ(3)
xxxx(ω,EF , Te) =

1

4kBTe

∫ ∞

−∞
dE

σ
(3)
xxxx(ω,E, 0)

cosh2
(

E−µ
2kBTe

) . (S2)

S2.1 THGE of SLG as an interface layer

In order to derive the THGE for SLG on a substrate we consider SLG as
an interface layer between air and substrate [5, 6], see Supplementary Fig.3,
and implement electromagnetic boundary conditions for the non-harmonic
radiations. The Maxwell equations in the nonlinear medium in the m(≥ 2)-
th order of perturbation are given by [7, 8]:

∇⃗ · B⃗(m) = 0 , (S3)

∇⃗ · D⃗(m) =
ρ
(m)
f

ϵ0
− 1

ϵ0
∇⃗ · P⃗ (m) , (S4)

∇⃗ × E⃗(m) = iωΣB⃗
(m) , (S5)

∇⃗ × B⃗(m) = µ0J⃗
(m)
f − i

ωΣ

c2
D⃗(m) − iωΣµ0P⃗

(m) . (S6)
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Supplementary Fig. 2. Feynamn diagram for Π
(3)
ℓ in the scalar poten-

tial gauge. Solid/wavy lines indicate non-interacting Fermionic propaga-
tors/external photons. Solid circles and square indicate density and current
vertexes

Supplementary Fig. 3. Schematic of SLG on substrate. The TH ra-
diated waves in the top and bottom medium obey the TH Snell’s law:
ni(3ω0) sin θi = n1(ω0) sin θ. The red dashed arrows indicate the propaga-
tion direction of in-coming and out-going waves.
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where D⃗(m) = ϵ(ωΣ)E⃗
(m) is the conventional displacement vector. ρ

(m)
f and

J⃗
(m)
f are the m-th order Fourier components of free charge and current. Note

that ωΣ =
∑m

i ωi, with ωi the incoming photons frequency, with c and ϵ0 the
speed of light and vacuum permittivity. For THG, we have m = 3, ω1,2,3 = ω0

and ωΣ = ωTHG = 3ω0. ϵ(ω) is the isotropic and homogenous linear relative
dielectric function. Only electric-dipole contributions are included.

We consider SLG in the x-y plane embedded between air and a substrate.
SLG is modeled by a dielectric function ϵs(ω), nonlinear polarization, free
surface charge and free surface current:

P⃗ (m) = δ(z)P⃗(m) , (S7)

ρ
(m)
f = δ(z)σ

(m)
f , (S8)

J⃗
(m)
f = δ(z)K⃗

(m)
f . (S9)

Having the Dirac delta, δ(z), in the above relations implies that SLG only
shows up in the electromagnetic boundary conditions. Note that P⃗(m) and
K⃗

(m)
f are in-plane vectors with zero component along the interface normal, ẑ.

The interface layer is the only source of nonlinearity. We assume σ(m)
f = 0 and

K⃗
(m)
f = 0, consistent with our experiments, where there are no free surface

charges and currents that oscillate at frequency mω with m = 2, 3, . . . .
The boundary conditions for the nonlinear fields at z=0 are obtained as:

B⃗
(m)
1 − B⃗

(m)
2 = µ0(K⃗

(m)
f − iωΣP⃗(m))× ẑ ,{

ϵ1(ωΣ)E⃗
(m)
1 − ϵ2(ωΣ)E⃗

(m)
2

}
· ẑ =

σ
(m)
f − ∇⃗2d · P⃗(m)

ϵ0
,

(E⃗
(m)
1 − E⃗

(m)
2 )× ẑ = 0 . (S10)

Where the sub-indexes 1,2 stand for the top(bottom) medium and ∇⃗2d =
x̂∂/∂x+ ŷ∂/∂y. The dielectric function of the interface layer, ϵs(ω), does not
emerge in the above boundary conditions.

The wave equation in the top and bottom media, with vanishing nonlinear
polarization, follows:

∇⃗ × ∇⃗ × E⃗(m) − ω2
Σ

c2
ϵ(ωΣ)E⃗

(m) = 0 . (S11)

which has a plane wave solution [8]:

E⃗(m) = ℓ̂E (m)ei(q⃗Σ·r⃗−ωΣt) + c.c. (S12)
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ℓ̂ · q⃗Σ = 0 and the dispersion relation in the top and bottom media is:

qΣ = |q⃗Σ| =
ωΣ

c
n(ωΣ) . (S13)

where n(ωΣ) =
√
ϵ(ωΣ) is the refractive index of the lossless media.

We consider a linearly polarized incident laser with arbitrary incident
angle exposed to the interface layer:

E⃗in = {x̂Ex + ŷEy + ẑEz} ei(q⃗·r⃗−ω0t) + c.c. (S14)

where

q⃗ =
ω0

c
n1(ω0)[− cos θẑ + sin θx̂] . (S15)

The leading nonlinearity of SLG is encoded in ↔
σ
(3)

. Using the SLG symmetry,
the third-order nonlinear polarization follows:

P⃗(3) =
⃗̃P

(3)

exp

{
i
3ω0

c
[n1(ω0)x sin θ − ct]

}
+ c.c. (S16)

where

P̃(3)
x =

i

3ω0

σ(3)
xxxx

{
E3
x + ExE2

y

}
,

P̃(3)
y =

i

3ω0

σ(3)
xxxx

{
E3
y + EyE2

x

}
,

P̃(3)
z = 0 . (S17)

The wave-vectors of TH radiated waves in the top and bottom media are:

q⃗3ω0,1 =
3ω0

c
n1(3ω0)[cos θ1ẑ + sin θ1x̂] ,

q⃗3ω0,2 =
3ω0

c
n2(3ω0)[− cos θ2ẑ + sin θ2x̂] . (S18)

According to the boundary condition relations of Eq.S10, we find q3ω0,1,x =
q3ω0,2,x = 3qx. Therefore, we derive the Snell’s law for THG:

n2(3ω0) sin θ2 = n1(3ω0) sin θ1 = n1(ω0) sin θ . (S19)

Considering the refractive indexes frequency dependence, the Snell’s law for
THG implies that sin θ1 = [n1(ω0)/n1(3ω0)] sin θ is not generally equal to
sin θ, in contrast with the specular reflection for first harmonic generation [8].
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The plane wave nature of the TH radiations implies:

cos θ1E (3)
1,z + sin θ1E (3)

1,x = 0 ,

− cos θ2E (3)
2,z + sin θ2E (3)

2,x = 0 . (S20)

By considering Eqs.S17,S18, the boundary condition relations Eq.S10 be-
come:

n1(3ω0)
[
cos θ1E (3)

1,x − sin θ1E (3)
1,z

]
+

n2(3ω0)
[
cos θ2E (3)

2,x + sin θ2E (3)
2,z

]
= i

3ω0

c

P̃x

ϵ0
, (S21)

n1(3ω0) cos θ1E (3)
1,y + n2(3ω0) cos θ2E (3)

2,y = −i
3ω0

c

P̃y

ϵ0
, (S22)

n1(3ω0) sin θ1E (3)
1,y − n2(3ω0) sin θ2E (3)

2,y = 0 , (S23)

E (3)
1,x = E (3)

2,x , (S24)

E (3)
2,y = E (3)

2,y , (S25)

n1(3ω0)
2E (3)

1,z − n2(3ω0)
2E (3)

2,z = −i
3ω0

c

P̃x

ϵ0
n1(ω0) sin θ . (S26)

From Eqs.S21-S26,S19,S20 we get:

E (3)
i,x = Si,x

σ
(3)
xxxx

cϵ0

{
E3
x + ExE2

y

}
, (S27)

E (3)
i,y = Si,y

σ
(3)
xxxx

cϵ0

{
E3
y + EyE2

x

}
, (S28)

E (3)
i,z = Si,z

σ
(3)
xxxx

cϵ0

{
E3
x + ExE2

y

}
. (S29)

where

S1,x = S2,x = − cos θ1 cos θ2
n1(3ω0) cos θ2 + n2(3ω0) cos θ1

, (S30)

S1,y = S2,y = − 1

n1(3ω0) cos θ2 + n2(3ω0) cos θ1
, (S31)

S1,z =
cos θ2 sin θ1

n1(3ω0) cos θ2 + n2(3ω0) cos θ1
, (S32)

S2,z = − cos θ1 sin θ2
n1(3ω0) cos θ2 + n2(3ω0) cos θ1

. (S33)
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For normal incidence we have θ = 0. From Eq.S19 we have θ1 = θ2 = 0.
Therefore, Si,z = 0 and Si,x = Si,y = −1/[n1(3ω0) + n2(3ω0)]. The time-
average of the incident intensity gives Iω0 = 2n1(ω0)ϵ0c|E⃗in|2. The intensity
of the transmitted TH signal is I3ω0 = 2n2(3ω0)ϵ0c|E⃗(3)|2. From this we get
Eq.2 of the main text for THGE.

S2.2 Symmetry considerations

The rank-4 tensor of σ(3) transforms as follows under an arbitrary ϕ-rotation:

σ
(3)
α′β′γ′δ′ =

∑
αβγ

Rα′α(ϕ)Rβ′β(ϕ)Rγ′γ(ϕ)Rδ′δ(ϕ)σ
(3)
αβγδ . (S34)

We take the z-axis as the rotation-axis, perpendicular to SLG. Therefore,
the rotation tensor is:

↔
R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
. (S35)

We take ℓ̂ =
↔
R(ϕ) · x̂. By plugging Eq.S35 in S34, we get:

σ
(3)
ℓℓℓℓ = [sinϕ]4σ(3)

yyyy + [cosϕ]4σ(3)
xxxx

+ cosϕ[sinϕ]3
[
σ(3)
xyyy + σ(3)

yxyy + σ(3)
yyxy + σ(3)

yyyx

]
+ [cosϕ]3 sinϕ

[
σ(3)
xxxy + σ(3)

xxyx + σ(3)
xyxx + σ(3)

yxxx

]
+ [cosϕ sinϕ]2

[
σ(3)
xxyy + σ(3)

xyxy + σ(3)
xyyx

+ σ(3)
yxxy + σ(3)

yxyx + σ(3)
yyxx

]
. (S36)

Because of the C6v symmetry for SLG on a substrate, there are only 4 inde-
pendent tensor elements [7]:

σ(3)
xxxx = σ(3)

yyyy = σ(3)
xxyy + σ(3)

xyyx + σ(3)
xyxy

σ(3)
xxyy = σ(3)

yyxx,

σ(3)
xyyx = σ(3)

yxxy,

σ(3)
xyxy = σ(3)

yxyx. (S37)

By implementing Eq. S37 in Eq.S36, we get σ
(3)
ℓℓℓℓ = σ

(3)
xxxx.
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S2.3 Effect of finite relaxation rate

The effect of finite τ in the TH conductivity can be derived from [3]:

σ̄(3)
xxxx(ω0, EF , 0) ≈ 17G(2|EF |, ~ω0 + iΓ)− 64G(2|EF |, 2~ω0 + iΓ) + 45G(2|EF |, 3~ω0 + iΓ)

24(~ω0)4

+
Γ

6(~ω0)4

{
17

[
1

2|EF |+ 3~ω0 + iΓ
+

1

2|EF | − 3~ω0 − iΓ

]
− 8

[
1

2|EF |+ 2~ω0 + iΓ
+

1

2|EF | − 2~ω0 − iΓ

]
+ 3~ω0

[
1

(2|EF |+ 3~ω0 + iΓ)2
− 1

(2|EF | − 3~ω0 − iΓ)2

]}
. (S38)

Note that (≈) is because we assume Γ ≪ ~ω0 [3]. Supplementary Fig.4 shows
that a finite τ has a small effect on THGE for most of SLGs in literature,
including the samples used in this paper.

S2.4 Te and EF effects on THGE

The Te and EF dependence of THGE for SLG on SiO2 at ~ω0 = 500meV is
shown in Supplementary Supplementary Fig.5, where 3 logarithmic singular-
ities at 2|EF | = ~ω0, 2~ω0, 3~ω0 for Te=0K can be seen. By increasing Te, the
first peak at 2|EF | = ~ω0 disappears and the two others merge and form a
broad maximum, roughly located at 2|EF| ∼ (2 + 3)~ω0/2 = 2.5~ω0. THGE
is almost insensitive to EF for 2|EF| < ~ω0. This can be explained using the
asymptotic relation of the TH conductivity for |EF| ≪ ~ω0. For Te = 0:

σ(3)
xxxx ≈ e4~v2F

(~ω0)4

{
1

96
+

i

π

(
2|EF|
3~ω0

)3

+ . . .

}
(S39)

Eq.S39 and Eq.2 of the main text explain the flat part of the curves in
Supplementary Fig.5 in the low-doping regime (~ω0 >2|EF |).

In order to quantify the tunability of THG in SLG by altering EF , we
define a parameter:

ξTHG ≡ ηTHG
max

ηTHG
min

, (S40)

where ηTHG
min stands for THGE in the nearly undoped regime (|EF | ≪ ~ω0).

Supplementary Fig.6 indicates that ξTHG decreases by increasing Te.
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Supplementary Fig. 4. Effect of momentum relaxation time on THGE.
THGE for SLG on Sa as a function of ω0 for different τ = ~/Γ at Te=2000K
and EF=200meV, for incident intensity∼ 2.4× 1012Wm−2, corresponding to
the value used in our experiments
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Supplementary Fig. 5. Doping dependence of THGE at different Te.
EF dependence of THGE for SLG on SiO2 at ~ω0 = 500meV for different Te

between 0K and 1800K. (a) Absolute THGE. (b) THGE normalized to the
minimum so that THGE at EF = 0 is equal to 1 for all Te.
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Supplementary Fig. 6. Te dependence of ξTHG. Te dependence of doping
induced enhancement parameter ξTHG for ~ω0 = 500meV.

S3 Fermi energy, Fermi level, chemical potential and
electronic heat capacity in SLG

When a pulsed laser interacts with SLG, after an initial transient of a few
tens fs, the electron and hole distributions in the conduction and valence
bands are given by the Fermi-Dirac functions fFD(ε;µλ, Te) with the same
Te and two chemical potentials µv and µc (see e.g. Refs.9–11). The chemical
potential of the electrons and holes in the valence band are, by definition,
opposite to each other.

At equilibrium, when µc = µv, they are denoted by µ. The term Fermi
level (EFL) is also sometimes used in literature to denote µ. The Fermi energy
(EF ) is defined as the value of µ at Te = 0K [12]. EF is thus a function of
the electron density only. After recombination of the photoexcited electron-
hole pairs, a single Fermi-Dirac distribution is established in both bands and
the equilibrium condition µv = µc holds [9–11]. The recombination time
depends on carrier density and laser fluence, and can be much longer than
the time. 20fs needed for thermalization (see Ref.9 and references therein).

The electronic heat capacity cv is defined as the derivative of the electronic
energy density U with respect to Te [12]. It depends on all the variables
which affect the electronic energy density, such as Te and the carrier density
or, equivalently, µ [12]. In a photoexcited system, in general, cv depends on
both the electron and hole densities, i.e. on both µc and µv. In this case, cv
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can be written as [12]:

cv(µc, µv, Te) =
∂

∂Te

∫ ∞

0

dεν(ε)εfFD(ε;µc, Te)

+
∂

∂Te

∫ ∞

0

dεν(ε)εfFD(ε;−µv, Te) , (S41)

where the first integral is the electron and the second the hole contribution.
The density of electronic states per unit of area is ν(ε) = Nf |ε|/[2π(~vF )2],
with Nf = 4 the product of spin and valley degeneracy. The Fermi-Dirac
distribution is:

fFD(ε;µ, Te) =
1

e(ε−µ)/(kBTe) + 1
. (S42)

To take the derivative with respect to Te in Eq.S41, the dependence of cv on
Te has to be specified. The electron and hole densities are given by:

ne(µc, Te) =

∫ ∞

0

dεν(ε)fFD(ε;µc, Te),

nh(−µv, Te) =

∫ ∞

0

dεν(ε)fFD(ε;−µv, Te) . (S43)

Since the total electron density in both bands is constant, the difference
between electron and hole densities is constant:

n(0)
e − n

(0)
h = ne(µc, Te)− nh(−µv, Te) , (S44)

where n
(0)
e and n

(0)
h are the intrinsic electron and hole densities before the

pump. At equilibrium, when µc = µv = µ, Eq.S44 can be solved for µ. A
photoexcited density δne changes the densities in both bands as follows:

ne(µc, Te) = ne(µ, Te) + δne,

nh(−µv, Te) = nh(−µ, Te) + δne . (S45)

After finding µ with Eq.S44, one can get µc and µv with Eq.S45. This
defines the dependence of cv on Te in Eq.S41, and allows us to calculate the
derivative with respect to the temperature. The result of Eq.S41 is shown in
Supplementary Fig.7 for µc = µv = µ. In Ref.13 the following expression is
given for cv:

cv(Te) =
18ζ(3)

π(~vF)2
k3
BT

2
e . (S46)
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Supplementary Fig. 7. Te dependence of the cv in equilibrium condi-
tions. Calculations for (a) EF=10 and (b) 300meV. The blue and red dashed
lines are Eqs.S46, S47.
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Supplementary Fig. 8. Te dependence of the electron energy density
and cv in out of equilibrium conditions. (a) Electron energy density and
(b) cv for EF=200meV. The blue, and red lines correspond to photoexcited
densities δne = 1012 and 3×1012cm−2, while the black line corresponds to a
thermalized system with a single µ

In principle, as noted in Ref.14, Eq.S46 is valid at the charge neutrality point
|µ| ≪ kBT only. For a degenerate system, kBT ≪ |µ|, we have [4]:

cv(µ, Te) =
π2

3
ν(EF)k

2
BTe , (S47)

as derived e.g. in Eqs.8.10 of Ref.4, in Eq.4 of Ref.15 and in Eq.8 in the
Supplementary Information of Ref.16. However, the numerical calculation
in Supplementary Fig.7 shows that the quadratic approximation (Eq.S46) is
much better in the regime where Te ∼ 1000K and µ ∼ 100meV. Supplemen-
tary Fig.8 shows that, taking into account the difference between µc and µv,
for typical values of the photoexcited density, contributes& 15% to cv.
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S4 Absorption coefficient and estimate of steady-state
Te under pumping and dissipation

S4.1 SLG absorption coefficient

The average absorbed power per unit area in SLG excited by a pulse of
duration ∆t, fluence F , and average frequency of the photons ω/2π can be
written as:

P

A
= P [α(ω, µc, µv, Te)]

F
∆t

, (S48)

where α(ω, µc, µv, Te) is the absorption coefficient and the function P(x) =
x θ(x) equals x for x > 0 and 0 for x < 0. For simplicity we omit P in
the main text. For frequencies in the optical domain, we consider only the
contributions due to direct vertical inter-band electronic transitions. The
origin of these transitions is purely quantum and does not depend on disorder.
On the other hand, intra-band transitions are mediated by defects [18] and
can be described classically. In general, the absorption coefficient is a function
of the electron distribution:

α(ω;µc, µv, Te) = (2.3%)
2

1 + nsub

[1− fFD(~ω/2;µc, Te)− fFD(~ω/2;−µv, Te)] ,

(S49)
for a sample lying between air and a substrate with refractive index nsub. This
expression is obtained using Eq.7.34 in Ref. [19] for the real part of the inter-
band conductivity and the relation between absorption and conductivity of
thin films discussed in Ref. [20]. This means that the absorption is reduced
due to Pauli blocking if the electron or hole distributions at EF = ~ω/2
increase. As Te increases, the absorption becomes a sizable fraction of its
maximum value 2.3%, even in the frequency range ~ω < 2EF where it van-
ishes at room temperature.

S4.2 Estimate of steady-state Te under pumping and dissipation

The number of photoexcited electron-hole pairs per unit area in the time
interval dt is given by the number of absorbed photons in the same time
interval per unit area, i.e. (dne + dnh)/2 = (P/A)/(~ω0)dt. In the steady
state, the energy delivered by the pump is transferred into the phonon modes.
Hence, we identify the electron-hole recombination time with τ . We then get:

1

2

(
dne

dt
+

dnh

dt

)
=

1

~ω0

P

A

− 1

2

[ne(µc, Te) + nh(−µv, Te)]− (n
(0)
e + n

(0)
h )

τ
. (S50)
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Supplementary Fig. 9. ~ω0 dependence of Te in photoexcited SLG.
Te as a function of ~ω0 for EF=200meV and τ=100 (black), 200 (blue), and
300fs (red). In (a) we use a constant α=(2.3%)/[(1 + nsub)/2] while in (b)
we use the full functional dependence of Eq.S49.

In the steady state this becomes:

n(0)
e + n

(0)
h = ne(µc, Te) + nh(−µv, Te)−

2τ

~ω0

P

A
. (S51)

Combining Eqs.S44,S51, we find:

δne =
τ

~ω0

P

A
. (S52)

To calculate EF (e.g. for a n-doped sample) one needs to solve Eqs.S42, S43,
S44 with µc = µv = EF , Te = 0, and n

(0)
h = 0, finding EF = ~vF

√
πne.

This relation can be used at Te = 300K and electron densities n
(0)
e & 1011

because the density of thermally excited holes is negligible. In photoexcited
SLG, even after recombination of the photoexcited electron-hole pairs, the
Te dependence of µ cannot be ignored. In this case, to calculate µ, one needs
to solve Eqs.S42,S43, S44 with µc = µv = µ and n

(0)
h = 0 as a function of Te.

This gives µ = EF [1 − π2T 2
e /(6T

2
F)] for Te . TF and µ = EFTF/(4ln2 × Te)

for Te & TF [17], where TF = EF/KB, with KB the Boltzmann constant. For
a typical case of EF=200meV and Te =1500K, we have µ ∼ 0.3− 0.5EF . To
calculate Te, we solve the non-linear Eq.4 in the main text, with the Te depen-
dence of α and cv discussed above. The values of Te, as a function of ~ω0, for
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Supplementary Fig. 10. EF dependence of Te in photoexcited SLG.
(a) Steady-state Te as a function of equilibrium EF for τ=200fs and ~ω0=0.4
(red), 0.6 (green) and 0.8eV (blue). (b) Te as a function of residual (intra-
band) absorption for EF=0.6eV and ~ω0=0.4eV.

several τ and the experimental conditions used in this paper (F=70.0µJ/cm2,
∆t=300fs, nsub=1.44), are in Supplementary Fig.9. Te increases for higher
energy photons and longer τ . Te ranges between≃800 and 1500K.

For Te >300K inter-band transitions can occur also when ~ω0 < 2EF ,
as show in Eq.S49. To apply the theory also to lower temperatures, where
intra-band transitions due to disorder play a role in the absorption process,
we modify Eq.4 of the main text as follows:

T = T0 + τ
P [α(ω;µc, µv, T ) + αres]

cv(µc, µv, T )

F
∆t

, (S53)

where a constant αres is added to α(ω, µc, µv, Te) to take into account the
contribution of the residual (intra-band) absorption. No modifications are
needed in Eq.S51 because the residual absorption, stemming from intra-band
transitions, does not directly affect the photoexcited density. We assume
that distinct contributions to the absorption are additive because α is much
smaller than unity. Supplementary Fig.10a plots Te as a function of EF for
τ=200fs, αres=0.1% and different ~ω0. Supplementary Fig.10b shows Te for
different αres for EF=0.6eV and ~ω0=0.4eV. Very small values of αres ∼ 0.1%,
corresponding to α ∼ 2.3%/20, lead to Te ∼500-600K. Te rapidly increases
to>1000K for αres ∼1%.
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Supplementary Fig. 11. SLG absorption. Absorption spectrum on the
SLG on Sa sample. The measurement was performed in transmission geom-
etry with a Cary 600 Series FTIR Spectrometer.

Supplementary Fig.11 reports the experimental absorption for the SLG
on Sa sample (EF ∼250meV). αres at ~ω < 2EF is∼1%. Since intra-band
absorption is mediated by defects [18] and nD is∼2-3 times higher in SLG
on Sa compared to SLG on Si/SiO2, we use 0.1% for αres in Supplementary
Fig.10a.
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