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Efficient phonon cascades in WSe2 monolayers
Ioannis Paradisanos 1,2✉, Gang Wang2,3, Evgeny M. Alexeev 2, Alisson R. Cadore2, Xavier Marie 1,

Andrea C. Ferrari 2✉, Mikhail M. Glazov 4✉ & Bernhard Urbaszek 1✉

Energy relaxation of photo-excited charge carriers is of significant fundamental interest and

crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics.

The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms.

Here we measure light scattering and emission in tungsten diselenide monolayers close to

the laser excitation energy (down to ~0.6 meV). We reveal a series of periodic maxima in the

hot photoluminescence intensity, stemming from energy states higher than the A-exciton

state. We find a period ~15 meV for 7 peaks below (Stokes) and 5 peaks above (anti-Stokes)

the laser excitation energy, with a strong temperature dependence. These are assigned to

phonon cascades, whereby carriers undergo phonon-induced transitions between real states

above the free-carrier gap with a probability of radiative recombination at each step. We infer

that intermediate states in the conduction band at the Λ-valley of the Brillouin zone parti-

cipate in the cascade process of tungsten diselenide monolayers. This provides a fundamental

understanding of the first stages of carrier–phonon interaction, useful for optoelectronic

applications of layered semiconductors.
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The optical properties of group VI transition metal dichal-
cogenide monolayer (1L-TMD) semiconductors are domi-
nated by excitons (bound electron-hole, e-h, pairs) with

binding energies of hundreds of meV1, with spin and valley
properties (such as valley-selective circular dichroism2) highly
beneficial for optoelectronics2, valleytronics3 and spintronics3–12.
Following optical excitation of a semiconductor above the band
gap, the subsequent energy relaxation pathways play an important
role in optics13–15 and charge carrier transport16,17. These pro-
cesses are related to hot (i.e. not in thermal equilibrium) charge
carriers and excitons1, and determine electron mobility18, optical
absorption in indirect band gap semiconductors19, and intervalley
scattering of hot electrons19. Photoluminescence (PL) and Raman
scattering can be used to probe the interactions of carriers with
phonons20. Different types of phonons with different energies can
participate in the relaxation process of excited carriers. However,
in some materials one type of phonon plays a dominant role and
leads to high-order processes, e.g. up to nine longitudinal optical
(LO) phonon replicas were reported in the hot PL of CdS and
CdSe20–22. Multiphonon processes are important in defining the
optoelectronic performance of ZnO23–26, GaN27 and bulk MoS228.
The optical oscillator strength in 1L-TMDs, i.e. the probability of
optical transitions between valence and conduction states, is
higher than in III-V quantum wells19, resulting in short (~1ps29)
exciton lifetimes. This favors hot PL emission, as excitons relax
between several real states30,31. Examination of phonon-induced
cascade-like relaxation processes in 1L-TMDs has been proposed
for future pump-probe experiments32. However, observation of
direct optical signatures in the early stages of carrier relaxation still
remains a significant challenge, because of the ultrafast timescale
(~100fs33) of these processes. Understanding the relaxation
pathways in tungsten diselenide monolayers (1L-WSe2) is

important for optoelectronic applications, such as photo-
detectors34 and lasers35, because it determines the recovery rate
(i.e. the population of carriers relaxing to the ground state over
time) and, as a result, the devices’ speed and efficiency.

Here, we use ultra-low (~5 cm−1 ~0.6 meV) cut-off frequency
(ULF) Raman spectroscopy to investigate the light scattered and
emitted by 1L-WSe2 on SiO2, hBN and Au, as well as suspended
1L-WSe2. We observe phonon-assisted emission of hot PL, per-
iodic in energy both in the Stokes (S) and anti-Stokes (AS)
spectral range, and we extract a phonon energy ~15 meV. The S
signal shows 7 maxima in the range of temperatures (T) from 78
to 295 K. We also detect up to 5 maxima in the AS signal ~75
meV above the laser excitation energy, increasing in intensity as T
is raised. We assign these to phonon cascades36. We include finite
T effects to compare S and AS signals and to understand carrier
relaxation at room temperature (RT). By analyzing the T and
excitation energy dependence, we conclude that a continuum of
states (in the free-carrier gap) is involved in e-h relaxation in 1L-
WSe2. Intermediate states in the conduction band around the Λ-
valley of the Brillouin zone (BZ) participate in the cascade pro-
cess. Hot PL so close in energy to the excitation laser gives access
to the initial stages of carrier relaxation. These processes are
ultrafast (e.g. ~100fs in GaAs33) and it is therefore challenging to
access them in time-resolved experiments. Our approach can be
extended to all layered materials (LMs) and their heterostructures
(LMHs), as well as to other materials systems, such as
perovskites37,38.

Results
1L-WSe2 flakes are exfoliated from bulk 2H-WSe2 crystals (2D
Semiconductors) by micromechanical cleavage on Nitto Denko
tape39, then exfoliated again on a polydimethylsiloxane (PDMS)

Fig. 1 Raman and hot PL spectra of 1L-WSe2. a Emission and scattering spectrum of 1L-WSe2 at 295K as a function of energy shift with respect to the
excitation laser (532 nm~2.33eV). The degenerate in-plane (E0) and out-of-plane (A0

1) Raman mode ~250 cm−1 43, as well as the Si Raman peak ~521 cm−1 47,
are prominent in both S and AS. b Magnified portion of the spectrum in yellow in a. This reveals 7 periodic S peaks and 5 AS. Their intensity decreases as a
function of the energy shift for both S and AS. c Raman spectra of 1L-WSe2 on SiO2/Si at 488, 514, 532, 633 nm and 295 K, shifted vertically for clarity.
d Raman spectra of 1L-WSe2 on different substrates (Au, hBN and suspended) at 295K and 514 nm excitation. Black points: experimental data. Red lines: fitted
cascades. Orange line: sum of fitted Lorentzians.
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stamp placed on a glass slide for inspection under optical
microscope. Optical contrast is used to identify 1L prior to
transfer40. Before transfer, 85 nm (for optimum contrast40) SiO2/
Si substrates are wet cleaned41 (60s long ultrasonication in acet-
one and isopropanol) and subsequently exposed to oxygen-
assisted plasma at 10W for 60s. The 1L-WSe2 flakes are then
stamped on the substrate with a micro-manipulator at 40 °C,
before increasing T up to 60 °C to release 1L-WSe242. The same
procedure is followed for transfer of 1L-WSe2 on hBN, Au and Si,
with 2 μm Au trenches made by lithography, to suspend the
samples.

The Raman and hot PL spectra are recorded in a back-
reflection geometry with a ×50 objective (NA= 0.45) and a spot
size ~1 μm. A liquid nitrogen cryostat (Linkam Scientific) placed
on a XY translational stage is used to control T between 78 K and
295 K and excitation area. Imaging of the sample and monitoring
of the excitation spot position are achieved using a set of beam
splitters, aligned to a charge-coupled device (CCD) camera. The
PL and Raman signals collected in the backward direction are
filtered by 3 notch volume Bragg filters with a total optical density
(OD)= 9. The cut-off frequency is ~5 cm−1 (~0.6 meV). The fil-
tered signals are then focused on the spectrometer slit and dis-
persed by a 1800l/mm grating before being collected by the
detector.

A typical RT Raman spectrum for 1L-WSe2 on SiO2/Si mea-
sured at 532 nm is shown in Fig. 1a. The degenerate in-plane, E0,
and out-of-plane, A0

1, modes of 1L-WSe243 dominate the spectrum

at ~−250 cm−1 (−31meV) and ~+250 cm−1 (+31meV) in the
AS and S range, while weaker Raman peaks are also observed
between 90 cm−1 (11meV) and 500 cm−1 (62meV) (see Methods
and Supplementary Note 1) as discussed in refs. 44–46. Rescaling
the intensity within the region marked in yellow in Fig. 1a reveals
an underlying periodic pattern, Fig. 1b. Hereafter, for the energy
scale we will use meV instead of cm−1. We fit all the peaks
between −120meV and +120meV using Lorentzians, as shown
in red in Fig. 1b. The fitting process is described in Methods.
There are 7 S peaks and 5 AS at 295 K. The peak ~120meV
(~970 cm−1) originates from a combination of the Si substrate
Γ1; Γ12; Γ250 phonons

47. Although the energy separation between
two consecutive peaks is constant, the intensity decreases as a
function of energy with respect to the excitation energy (here fixed
at 0). To exclude other contributions, such as thin-film inter-
ference effects48, we measure 1L-WSe2 transferred on Au, placed
on top of few-layer (FL) (~10 nm) hBN and also suspended,
Fig. 1d (see Methods and Supplementary Note 1 for optical
microscope images and PL characterisation). The intensity of the
hot PL is comparable among the same steps of the cascade, and
the position of the peaks is the same. Therefore, the cascade is
linked to intrinsic relaxation mechanisms of 1L-WSe2, not to
substrate-induced interference. Henceforth we will focus on 1L-
WSe2 on SiO2/Si.

To exclude the possibility that our laser is in resonance with a
specific transition, we perform variable excitation wavelength
experiments at 295K. Figure 1c plots the spectra measured at

Fig. 2 Energy separation and T dependence. a Emission energies as a function of number of steps in the cascade, extracted from the RT spectrum in
Fig. 1b. The dashed black line is a linear fit, giving a step energy ~15.42 ± 0.08meV. b–d 532 nm Hot PL spectra of 1L-WSe2 at b 78 K, c 200 K, d 250 K.
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488 nm (~2.54 eV), 514 nm (~2.41 eV), 532 nm (~2.33 eV) and
633 nm (~1.96 eV). We observe the same high-order features with
identical energy separations in both S and AS. All these excitation
energies lie above the free-carrier gap of 1L-WSe2 ~ 1.89 eV49–51.
By comparing results for 1L-WSe2 on different substrates and for
different excitation energies, we deduce that phonon-assisted hot
PL is the dominant mechanism, whereas contributions from
other excitations, such as plasmons52, are negligible, otherwise
intensity and/or energy variations would be expected between Au
and SiO2/Si, hBN, suspended cases.

Figure 2a plots the energy offset with respect to the excitation
laser (here 532 nm) of each emission feature as a function of the
number of steps in the cascade at 295 K. Applying a linear fit, we
extract ~15.42 ± 0.08 meV, regardless of substrate and excitation
energy. This periodic modulation of the detected light intensity
suggests that the scattering of photoexcited carriers is dominated
by one prominent phonon mode. Since we excite above the free-
carrier gap of 1L-WSe249, the intermediate states of the transi-
tions are real. The e-h pair representation is in Fig. 3a.

The lattice T could affect the peaks intensity, as phonon occu-
pation increases with T53,54. We thus perform T dependent mea-
surements from 78 to 295 K, while keeping the excitation power
constant ~26 μW. No emission of AS features is observed at 78 K,
Fig. 2b, with the exception of two sharp lines ~−30 and ~−60meV,
originating from 1L-WSe2 and Si Raman modes, respectively. The
hot PL peaks are seen at 200 K, Fig. 2c, and a further increase in
intensity is observed at 250K, Fig. 2d. Additional measurements at
120, 160, and 295K are performed and used in the fits in Fig. 3c.
Thermal effects are expected to modify the phonon energies55.
However, in the 78–298 K range we do not observe any measurable
shifts in the position of the hot PL peaks, because the shifts induced
by acoustic phonons are smaller compared to our experimental
error, as discussed in Methods.

Discussion
At low T (78 K), phonon absorption processes are suppressed
because of the insufficient lattice thermal energy53. Optical
excitation results in free e-h pair formation56,57 or virtual for-
mation of an exciton with small in-plane wavevector (k ≲ ωi/c
with ωi the excitation laser frequency)1. With the subsequent
phonon emission, the e-h pair reaches a real final state (blue
parabola in Fig. 3a), for which radiative recombination is for-
bidden by momentum conservation19. This triggers a cascade
relaxation process36, whereby at each step a phonon is emitted
(or absorbed for a T whereby the thermal energy is equal or
higher than the phonon one energy)19. If the interaction with
one phonon mode with energy ℏΩ dominates overall other
inelastic scattering processes, the exciton loses energy by
integer multiples of ℏΩ19,36. After emission of several (≥2)
phonons, the exciton recombines and emits a photon with
frequency ωf in a two-step process via an intermediate state
with a small (k ≲ ωi/c) wavevector, for which radiative recom-
bination is momentum allowed. Thus, we have secondary
emission or scattering of light with S shift ωi− ωf= jΩ, where
j= 2, 3,…., while j= ±1 are impossible as we scatter out of the
light cone (i.e. the region of small wavevectors) with the first
event. At finite T, in addition to phonon emission, absorption
also comes into play, and AS emission is observed at ωf− ωi=
jΩ.

Multiphonon processes that do not involve real states require
higher order exciton–phonon interactions58, and are therefore
less probable. In contrast, the process in Fig. 1c is resonant, since
excitation in the free-carrier gap means that all intermediate
states are real. This allows us to describe the phonon emission
cascade via the kinetic equation for the exciton distribution
function f(ε), where ε is the exciton energy, as derived in Sup-
plementary Notes 2, 3. Since the energy of the exciton changes in

Fig. 3 Comparison between experiments and theory. a Scheme of phonon-assisted hot PL. The incident, _ωi, and outgoing, _ωf, photons are shown by
dotted magenta vertical arrows. The phonons participating in the cascade are indicated by the green arrows. The e–h pair dispersion curve is the blue
parabola. The light cone is shown by red dashed lines. b Calculated S/AS spectra at different T. c IS/IAS for different numbers of cascade steps as a function
of T. Filled circles are experimental data at 532 nm. The fit with Eq. (9) is indicated by dot-dashed lines. d Extended BZ of 1L-WSe2. Corresponding valleys
are marked as Γ, K, K0 and Λi, Λ

0
i (i= 1,…, 3). e Experimental data at 160K (black line) compared to the calculated spectrum from Eq. (2) for no= 0.5. f Ratio

of measured intensities of j= 1 to j= 2 peaks and corresponding fit with Eq. (10).
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each scattering event by ±ℏΩ, the distribution function can be
written as:

f ðεÞ ¼
X1

j¼�1
f jδðε0 � j_ΩÞ ð1Þ

where ε0 is the excitation energy, δ(ε) is the Dirac δ-distribution
(phonon dispersion and damping result in the broadening of the
δ-distribution, as detailed in Supplementary Notes 2, 3), fj
describes the peaks intensity. At steady state (partial derivative
with respect to time equals zero) these obey a set of coupled
equations describing the interplay of in- and out-scattering pro-
cesses:

γf j ¼ γo f j�1ðno þ 1Þ þ f jþ1no
h i

þ gδj;0;

j ¼ ¼ ;�2;�1; 0; 1; 2; ¼ :
ð2Þ

where no ¼ exp _Ω=kBTð Þ � 1½ ��1 is the phonon mode occupancy
at T, γo is the rate of the spontaneous phonon emission,
γ ¼ γoð2no þ 1Þ þ γ0, is the total damping rate of the exciton,
which includes recombination and inelastic scattering processes
γ0. The last term in Eq. (2), gδj,0, describes the exciton generation
at energy ε0, and is proportional to the exciton generation rate.
Eq. (2) has the boundary conditions:

lim
j!�1

f j ¼ 0; f Kþ1 ¼ 0; ð3Þ
where K is the maximum number of steps in the cascade:

K ¼ _ωi � E1

_Ω

� �
; ð4Þ

with E1 the energy of the exciton band bottom. Eq. (2) is derived
assuming γo and γ0 independent of ε. This assumption is needed
to get an analytical solution of Eq. (2), but can be relaxed (see
Supplementary Notes 2, 3).

The general solution of Eq. (2) is:

f j ¼
Axjþ; j > 0;

Bxjþ þ Cxj�; j≤ 0;

(
ð5Þ

where

x ± ¼ γ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 4noðno þ 1Þγ2o

p

2γono
; ð6Þ

and x+ > 1 and x− < 1, A, B and C are the coefficients. For cas-
cades with K≫ 1 we can set B= 0 and:

A ¼ C ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2oþγ02þ2γoγ

0ð1þ2noÞ
p : ð7Þ

In this model, the spectrum of the scattered light consists of peaks
with I∝ fj, and scattering cross-section:

σðωi;ωf Þ ¼ σ0ðωi;ωf Þ

´
P10

j¼2

1
π

2Γ
4Γ2þðjΩ�ωiþωf Þ2

f j:
ð8Þ

Here σ0(ωi, ωf) is a smooth function of frequency, Γ is the phonon
damping. This description is valid for peaks with ∣j∣ > 1, the prime
at the summation denotes that the terms with j= 0, ±1 are
excluded. Accordingly, the peaks with Raman shift ±ℏΩ are
suppressed. At no→ 0 (limit of low T), x+≫ 1 and Ij with
negative j (AS components) are negligible. At the same time,
x−→ (γo/γ) and the S peak intensities, IS, scale as ðγo=γÞj. This
scaling is natural for cascade processes19,59,60, since the prob-
ability of phonon emission relative to all other inelastic processes
is given by γo/γ, thus IS decays in geometric progression. At finite
T, the AS peaks appear with IAS proportional to the thermal
occupation of the phonon modes. Thus, the S/AS intensity ratio,

IS/IAS, with j steps in the cascade, can be written as:

ISðjÞ
IASðjÞ

¼ f j
f �j

¼ 1þ 1
no

� �j

; ð9Þ

and corresponds to the ratio of phonon emission and absorption
rate to the power of j.

The calculated I distribution and spectra at various T (corre-
sponding to different no) are presented in Fig. 3b. Figure 3c plots
IS/IAS as a function of T from Eq. (9). The experimental points
collected from the fitted I of each step in the cascade at 532 nm
excitation are displayed with circles. The absence of data at 78 K
indicates no detection of IAS at this T. Applying Eq. (9) to the
steps 2–5 in the cascade, with a phonon energy ~15.4 meV
extracted from Fig. 2a, gives the dashed lines in Fig. 3c, in good
agreement with experiments.

Our model captures the main experimental observations well.
The periodic pattern of hot PL intensity is reproduced by the
calculations, Fig. 3b, and IS/IAS closely follows Eqs. (9), Fig. 3c.
There is good agreement between our data and the calculated
spectra from Eq. (2). An example for no= 0.5 at 160 K is in
Fig. 3e. In our model, the peaks with j= ±1 are absent because
N ≥ 2 phonons are needed for the first step of the cascade process,
as for Fig. 3a. However, Fig. 1 shows that j= ±1 peaks are smaller
than j= ±2 ones, but still detectable. We consider IS(1)/IS(2) as
plotted in Fig. 3f. The possible mechanisms of j= 1 peak for-
mation are as follows. (i) Elastic disorder or acoustic phonon-
induced scattering, which provides a transfer between states
within the light cone and states at the dispersion. (ii) Combina-
tion of phonon emission and absorption, where the j= 1 peak
appears as a result of two phonon emission, followed by one
phonon absorption. In (i) IS(1)/IS(2) does not depend on T. In
(ii):

ISð1Þ
ISð2Þ

¼ exp � _Ω

kBT

� �
; ð10Þ

strongly depends on T. This is indeed the case in our experiment,
see Fig. 3f. This additional channel is also based on the interaction
with the same phonon energy ~15 meV. Elastic processes could
be the origin of a small offset between the experiment and the
fitted curve.

To get a better understanding of the relaxation pathways, we
consider different scattering mechanisms. Scattering within the
same valley is not plausible, due to the mismatch of BZ centre
phonon energies61. The energy ~15 meV could correspond to
either Γ− K or Γ−Λ phonons. The phonon dispersion in 1L-
WSe2 shows acoustic phonons with energies ~15 meV46,61. These
have a flat dispersion, necessary to observe the high number of
oscillations we report, and are compatible with the model in
Fig. 3a.

Another option involves K-K 0 scattering of e (h) or, equiva-
lently, Γ-K scattering of excitons. This would result in intensity
oscillations as a function of the step in the cascade, due to the
suppression of the process Γ ! K ! K 0 ! Γ compared to, Γ→
K→ Γ (see Supplementary Notes 4, 5). However, we do not
observe intensity oscillations for different cascade steps in our
spectra. As a result, we exclude this scenario. Therefore, the
excitonic states in the Λ valleys play a role as intermediate states,
Fig. 3d. The conduction band minima in these valleys are rela-
tively close (~35 meV) to K, and play a crucial role in exciton
formation and relaxation62–65. In this case, h remain in K (or K 0),
but e scatter to any of the 6 available Λ valleys, and then scatter
between these Λ valleys, before going back to K (K 0). This can be
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described taking into account all pathways, as:

photon ! Γ�!_Ω Λi�!
_Ω

¼ �!_Ω Λ0
j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

j

�!_Ω photon;

with arbitrary number of steps j (both odd and even). The matrix
elements of the processes are similar. We do not observe any
noticeable periodic emission for 1L-MoS2 and 1L-WS2. This
supports our interpretation, as the phonon scattering mechanism
is linked to the particular bandstructure of 1L-WSe262.

Similar oscillations can appear for free e and h36, see Supple-
mentary Note 4. The basic description of the effect is similar to
what we observe here, and our model can be extended to take into
account e/h distribution functions. The spectra of scattered light
and IS/IAS are similar to those calculated above. We cannot dis-
tinguish between exciton and the free-carrier cascades directly in
our experiments. The excitonic description, however, seems
straightforward due to enhanced (with respect to bulk materials)
Coulomb effects in 1L-TMDs1.

In conclusion, we investigated the light scattered and emitted
by 1L-WSe2 excited above the free-carrier gap. We detected a
periodic modulation of phonon-assisted hot PL with a period
~15meV both in S and AS. We measured the S and AS intensity
evolution from 78 to 295 K. We explained these high-order
processes using a cascade model where electrons (holes) make
successive transitions between real states with a finite probability
of radiative recombination at each step. The electron states in the
Λ valleys are intermediate states for efficient exciton relaxation.
Our findings provide fundamental understanding of the initial
steps of exciton relaxation in 1L-WSe2, and can be used to design
optoelectronic devices based on this material. Our approach can
be extended also to other layered materials and their hetero-
structures, as well as to perovskites.

Methods
Raman and PL spectra fitting. Supplementary Fig. 1a–c presents optical micro-
scopy images of representative samples: (a) 1L-WSe2 on Au and suspended 1L-
WSe2; (b) 1L-WSe2 on SiO2/Si; (c) 1L-WSe2 on hBN. Representative PL spectra
collected 295 K at 514 nm excitation are in Supplementary Fig. 1d, showing a peak
~1.65 eV related to the A-exciton resonance1,12. Supplementary Fig. 2a shows
representative data fits. The spectrum, at 295 K for 532 nm excitation, is shown
with black dots. Blue lorentzian functions are used to fit the Raman peaks (FWHM
~ 1–10 cm−1). The residual spectral weight is also fitted with Lorentzians and
results into the broader (FWHM~ 50–80 cm−1) peaks of the hot PL (red). A flat
baseline is taken into account for the whole energy scale, since the background in
the S spectral range increases due to the higher intensity of the S cascades com-
pared to the AS ones. A fit is shown in Supplementary Fig. 2b. The Lorentzians
overlap, creating an asymmetric broad background (indicated by yellow dashed
lines in Supplementary Fig. 2b).

We now consider the thermally induced shift in the hot PL cascades of 1L-WSe2
in the 78–295 K range. We analyze Pos(E0 , A 0

1), as shown in the normalized
intensity spectra in Supplementary Fig. 2c. Pos(E0 , A 0

1) red shift as a function of T,
Supplementary Fig. 2d. Although the overall T dependence is not linear55, in
the 78–295 K range we get:

k ¼ ð�0:00755 ± 0:00083Þ cm�1K�1; ð11Þ
where k is the slope. This corresponds to a shift of ~0.2 meV in the 78–295 K range.
However, acoustic modes participate in the hot PL phonon cascades and their
T dependence is weaker compared to optical phonons66. Thus ~0.2 meV is an
upper limit of the expected shift of the hot PL cascades in this T range. The period
~15.42 ± 0.08 meV is quantified at 295 K by applying a linear fit in the position of
the steps in the cascade in Fig. 2a, while the error bar corresponds to the standard
error of the linear fit. This does not take into account other sources, such as the
error in the dispersion of the grating, the fitting accuracy, etc, therefore the actual
error bar is expected to be larger than 0.08 meV. Thus, although a shift of the order
of less than one tenth of meV induced by acoustic phonons would be expected in
this T range, it is very challenging to experimentally observe it in hot PL.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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