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ABSTRACT 

We report mode-locking of an optically pumped VECSEL using a graphene-based saturable absorber mirror (GSAM). 
Self-starting and stable modelocked operation is demonstrated with 473 fs pulses at 1.5 GHz repetition rate and 949 nm 
center wavelength. Wavelength tuning is achieved over a 46 nm bandwidth. We discuss the mirror design, the fabrication 
of the GSAMs, and give an outlook on further optimization of the design, including dielectric top coatings to protect the 
graphene and to increase the flexibility in the design. 
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1. INTRODUCTION 
Ultrafast vertical-external-cavity surface-emitting lasers (VECSELs),1, 2 are excellent pulsed sources for various 
applications, such as multi-photon microscopy,3 optical data communications,2 supercontinuum generation4 and ultra-
compact stabilized frequency combs.1 VECSELs combine the advantages of semiconductor lasers, such as compactness,5 
with those of diode pumped solid-state lasers, such as low timing jitter6, excellent beam quality,7 high average7, 8 and 
peak power4, 9. The conventional devices used for modelocking of VECSELs are semiconductor saturable absorber 
mirrors (SESAMs)10 since they offer advantages such as an excellent ratio of saturable to non-saturable losses (e.g. 
50:111) and a high damage threshold (>0.21 J/cm2)11. However, SESAMs, epitaxially grown on lattice-matched 
semiconductor substrates10, only offer a limited operation bandwidth (to date, the broadest tuning range of VECSELs 
mode-locked with SESAMs is 13.7 nm)12 and have a recovery time ranging from several hundreds of fs13 to tens of ps.11 
Graphene based saturable absorbers (GSAs) have emerged as a promising SAs for ultrafast pulse generation, since 
graphene offers broadband operation and ultrafast recombination dynamics in the order of tens of fs.14, 15 High quality, 
single layer graphene (SLG) can be grown16 and integrated in a variety of lasers.17 In common linear cavities, SLG is 
used as SA in transmission18, 19 resulting in a double-pass per round-trip. The unsaturated loss in such a configuration is 
typically ~2·2.3% (the factor 2 accounts for the double-pass). While this allows to use GSA to modelock fiber16, 20, 21, 
solid-state17, 19 and waveguide22 lasers, it poses limitations for VECSELs1. These typically require a SA with losses <3% 
per cavity round-trip.23, 24 Therefore, inserting a GSA in transmission (e.g. SLG on a quartz substrate19) inhibits lasing. 
To achieve self-starting passive modelocking of a VECSEL using a GSA it is crucial to reduce the total cavity roundtrip 
losses to <3% while maintaining a modulation depth in the range 0.5-2%.2 We achieved this in Ref. 24 by controlling the 
electric field intensity in SLG on a high-reflection mirror.  Here we give an outlook on the optimization of the design of 
the saturable absorber mirror, such as the use of a dielectric top-coating. 
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2. MIRROR DESIGN 
The structure consists of a highly reflecting mirror with a spacer and SLG on top. The thickness of the spacer changes 
the field intensity enhancement at the SLG and thus determines the absorption of the device.24 The field intensity 
enhancement for a design wavelength λ in function of the thickness of the spacer layer d is then24: 
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where n is the refractive index of the spacer layer material. Using SiO2 as spacer with thickness 0, λ/12 SiO2, λ/8 SiO2 
and λ/4 SiO2, the field intensity enhancement at the location of SLG ξabs is 0, 0.5, 1.3 and 4 (Figure 1 and Eq. 1). The 
absorption is24

abs 2.3%A ξ= ⋅ , where 2.3% is the absorption for SLG in transmission (corresponding to ξabs=1). 

 
Figure 1. Spacer layer thickness dependent field intensity enhancement at the SLG location ξabs (left axis) and corresponding 
linear absorption (right axis), calculated (black line) compared to the absorption measurements (dots). Insets: Schematic 
view of four structures showing the last DBR mirror pairs with a) no SiO2, b) λ/12 SiO2 (55 nm), c) λ/8 SiO2 (83 nm) and d) 
λ/4 SiO2 (165 nm). The dark gray curve shows the normalized standing wave electric field intensity (for the design 
wavelength λ=960 nm) as a function of vertical displacement from the mirror surface. SLG (red) is the top layer.  

3. FABRICATION AND CHARACTERIZATION 

Four GSAMs are fabricated with spacers between the mirror and SLG by coating the mirror with: 0, λ/12 SiO2, λ/8 SiO2 
and λ/4 SiO2. The high-reflection mirrors are anti-resonant distributed Bragg reflectors (DBRs).25, 26 DBRs typically 
consist of a stack of multiple layers with alternating high and low refractive index25, 26, each with an optical thickness of 
a quarter of the design wavelength. The partial reflections at the layer interfaces interfere constructively resulting in high 
reflection (~100%).25, 26 We use 30-pair anti-resonant AlAs/GaAs (81.1 nm/67.85 nm) DBRs, designed to have a node of 
the standing wave at the surface of the top layer (anti-resonance) and a reflectivity >99.997 % at 960 nm. The DBRs are 
grown on a 3 inch 600 μm thick GaAs by molecular beam epitaxy (MBE), then cleaved into square 1 cm2 pieces. 
Subsequently, the SiO2 layers are deposited by plasma enhanced chemical vapor deposition with thickness of 0 nm, 
55 nm (λ/12), 83 nm (λ/8) and 165 nm (λ/4) on different DBR samples (Figure 1(a-d)).  

The SLG is grown by chemical vapor deposition (CVD) as discussed in Ref. 24. Subsequently it is transferred onto 
the SiO2-coated DBRs.24 A picture of the λ/8 SiO2 sample is in Figure 2(a). The linear unsaturated absorption of the four 
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samples is measured with a high-precision reflectivity setup27 giving A=0.25% (no SiO2), 1.6% (λ/12 SiO2), 3.2% (λ/8 
SiO2) and 10% (λ/4 SiO2) at 960 nm. In Figure 1 those measurements show good agreement with the calculated values 
based on Eq. 1. Figure 2(b) plots the field intensity enhancement calculated from Eq.1 as a function of wavelength. The 
GSAMs reflectivity as a function of input light fluence (J/cm2) is characterized using the setup described in Ref. 27. The 
measurement for the λ/4 SiO2 device (the GSAM with ξabs=4) reveals a saturation fluence Fsat~100 μJ/cm2 
(corresponding to a peak intensity Ipeak ~1.0 GW/cm2) and a modulation depth ~5%.24 The Fsat of the λ/8 sample is 
estimated ~200 μJ/cm2, higher than the λ/4 sample, because the smaller field intensity enhancement at the absorber 
makes the device saturate at a higher fluence.24  

  
Figure 2. a) λ/8 GSAM used for the modelocking experiments: SLG transferred onto the AlAs/GaAs DBR with a layer of 
83 nm SiO2. The SLG is seen as shaded area, since the 83 nm SiO2 thickness gives a high optical contrast in the visible 
range28. b) Field intensity enhancement at the absorber vs. wavelength. 

4. MODELOCKING AND WAVELENGTH TUNING 

 
Figure 3. a) Sketch of the laser cavity, b) intensity autocorrelation trace and the fit to the auto correlation of a 473 fs sech2 
pulse, c) optical spectrum and d) Microwave spectrum of the repetition rate centered at 1.5 GHz and measured with a 
resolution bandwidth of 1 kHz. 
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To demonstrate the suitability for passive modelocking the λ/8 GSAM sample is used in a VECSEL cavity. The laser 
cavity setup is in Figure 3(a). The resonator mode and pump spot radius on the gain chip are 150 and ~30 µm on the 
absorber, using a concave folding mirror with 20 mm radius of curvature. With a quantum dot (QD) VECSEL gain chip 
we obtain stable modelocking with pulse duration of 473 fs, as shown in the autocorrelation trace in Figure 3(b). The 
spectrum is centered at ~950nm (Figure 3e) and the repetition rate is 1.5 GHz (consistent with the 10 cm cavity length). 
The average output power is 5 mW using an output coupling (OC) mirror with 0.1% transmission. The pulse fluence on 
the GSAM is~125 µJ/cm2. The broad operation bandwidth is demonstrated using three VECSELs optimized for emission 
at 940, 950 and 970nm. An antireflection coated 20 μm thick fused silica etalon is used for wavelength tuning. The 
GSAM is not temperature controlled, and supports modelocking in a tuning range ~46 nm, from 935 to 981 nm.24 

5. PROSPECTIVE DESIGN OPTIMIZATION 
The approach to optimize the spectral flatness of the device is to place the absorber in the antinode of the standing wave 
(in the field maximum) for the design wavelength. This is the case for the λ/4 GSAM (Figure 1d). But, this has ξabs=4, 
therefore too high absorption for VECSEL modelocking. By adding an additional dielectric layer on top of the SLG the 
field may be reduced, while keeping the SLG still in the anti-node. This is shown in Figure 4(b). Here a λ/4 SiO2 
(165 nm) layer between DBR and graphene places the absorber in the anti-node and a λ/4 Al2O3 (136 nm) layer reduces 
the field. Figure 4(b) shows the design of the λ/8 GSAM for comparison, with the same field intensity enhancement at 
the design wavelength of 960 nm. 

 
Figure 4. a) Design with additional dielectric layer as top coating. Here the absorber is placed in the antinode and the field is 
reduced with the top coating to the field intensity enhancement of ξabs=1.3, b) design used for modelocking and the 
broadband tuning experiment with field intensity enhancement of 1.3 (at 960 nm) at the SLG absorber position. 

In Figure 5 the field intensity enhancement is computed (using the transfer matrix algorithm for multilayer structures29) 
in the wavelength range between 920 and 1000 nm. This shows an improvement in the wavelength independence of the 
field intensity enhancement, therefore absorption of the device, in comparison to the λ/8 GSAM. Furthermore this 
coating also acts as a protective top-coating. 

 
Figure 5. Field intensity enhancement at the absorber vs. wavelength for the new design. The new design (dark blue) has a 
much weaker wavelength dependence compared to the λ/8 SiO2 sample (light blue). 
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6. CONCLUSIONS 
We reported on an approach to control the absorption of graphene on a mirror in the range between 0-10%. This enabled 
us to fabricate a GSAM for VECSEL modelocking with sub 500 fs pulses at 1.5 GHz pulse repetition rate. Wavelength 
tuning was achieved over a 46 nm bandwidth. We gave an outlook on further optimization of the design, including 
dielectric top coatings to protect the graphene and to further increase the spectral flatness.  
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