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Carbon nanotubes mode-lock a
laser-written wavegquide laser

Giuseppe Della Valle, Roberto Osellame, Giulio Cerullo,
Paolo Laporta, Uwe Morgner, Aleksey G. Rozhin, and
Andrea C. Ferrari

Femtosecond laser writing and films of carbon nanotubes combine to
create a 1.5um mode-locked waveguide laser that provides 1.6ps pulses.

Recently, great effort has been devoted to developing wave-
guide lasers able to provide ultrashort light pulses because of
their inherent simplicity and compactness compared with fiber
lasers.!"2 Because erbium:ytterbium (Er:Yb)-doped glass waveg-
uides can generate large gains (2-4dB/cm) over short lengths,
they can be used to make lasers with compact cavities and high
repetition rates. Such lasers will provide inexpensive low-noise
light sources for applications in optical communications, in opti-
cally sampled analog-to-digital converters,® and in arbitrary op-
tical waveform synthesis.*

The technique of passive mode locking that employs semicon-
ductor saturable-absorber mirrors is widely used to generate pi-
cosecond and femtosecond laser pulses.5 Recently, however, a
new technology for making saturable absorbers has emerged,
based on carbon nanotubes (CNTs). CNTs show strong and tun-
able saturable absorption in the near IR and ultrashort recov-
ery time.® They also can be cheaply assembled into polymer
composites and easily integrated into optical fiber communica-
tion systems. We have made a femtosecond-laser-written wave-
guide laser that operates in the very stable passive mode-locking
regime by means of an innovative saturable absorber based on
CNTs.

Active waveguide and the CNT mode locker

We used an innovative diode-pumped femtosecond oscillator,
operating at a wavelength of 1040nm with a 350fs pulse dura-
tion to write the waveguide in an Er:Yb-doped phosphate glass
(2% wt. of Er,O3 and 4% wt. of YbyO3).” A high-numerical-
aperture objective focuses the femtosecond pulses inside the
glass. We implemented a transverse writing configuration in
which motorized stages translated the sample perpendicular to
the laser beam at 50-100um/s (see Figure 1). We adopted an op-
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Figure 1. The writing system for waveguide manufacturing holds the
beam from the laser steady while a translation stage moves the glass
sample. Yb:KYW: Ytterbium-doped potassium yttrium tungstate.
Er:Yb: Erbium:ytterbium.

timized set of writing parameters (885kHz repetition rate, 250n]
energy per pulse) to fabricate a 36mm-long waveguide. Inser-
tion losses from this waveguide to standard telecommunications
fibers were as low as 1.9dB.

CNTs are produced by laser ablation.? We used high-power
ultrasonication to disperse purified CNTs in water with sodium
dodecylbenzene sulfonate as a surfactant. The residual CNT
bundles are removed by microfiltration, and the resulting solu-
tion is then mixed with polyvinyl alcohol (PVA) and dried at
room temperature to obtain a 50um-thick freestanding film. The
film has a broad absorbance spectrum around 1.5um—as shown
in Figure 2(a)—with a 0.36 peak (i.e., 1.52dB absorption, of which
0.6dB is saturable), a laser damage threshold >600MW / cm?,
a saturation intensity of ~80MW/cm?, and a recovery time
shorter than 1ps. By sandwiching such a film between two FC-
or PC-style connectors with index-matching fluid at both fiber
ends, we packaged a fiber-pigtailed CNT-PVA mode locker: see
Figure 2(b).

The mode-locked waveguide laser cavity

Figure 3 shows a schematic of the mode-locked waveguide
laser in a ring cavity configuration that incorporates both the
36mm-long active waveguide and the fiber-pigtailed CNT-PVA
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Figure 2. (a) Absorbance spectrum of the carbon nanotube (CNT) film
peaks near 1.5um. (b) A freestanding film of CNT5 (red) is sandwiched
between fiber connectors with index-matching fluid (yellow) to create
a fiber-pigtailed mode locker.

mode locker.” Two 976nm laser diodes, which provide a total
of 480mW incident power, are coupled to the waveguide in a
bi-propagating pumping scheme by wavelength division multi-
plexers (WDMs). Previous gain measurements on this sample,
performed at 1.5um, showed a net gain in the whole C-band,
with a 7.3dB peak value at 1535nm for an incident pump power
of 460mW. Five percent of the intracavity radiation is coupled
out of the ring resonator. Unidirectionality of light propagation
in the ring is imposed by an optical isolator.

Figure 4(a) shows the laser output spectrum. Continuous-
wave (CW) laser action starts at 450mW incident pump power,
and self-starting single-pulse stable mode locking is observed
just above the laser threshold. The laser central wavelength in
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Figure 3. Experimental setup of the mode-locked waveguide laser uses
two laser diodes (LDs) to pump the waveguide. WDM: Wavelength-
division multiplexer. CNT-PVA: CNTs mixed with polyvinyl alcohol.
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Figure 4. (a) Laser output spectrum in continuous wave (CW) and
mode-locking regimes. (b) Autocorrelation trace of the mode-locking
pulse.

the mode-locking regime is 1535nm, with an oscillating band-
width (at -3dB) of 1.6nm. Using an autocorrelator, we esti-
mated the pulse duration to be about 1.6ps, resulting in a time
bandwidth product of 0.329, which provides fairly good agree-
ment with the 0.315 value for transform-limited sech (hyperbolic
secant)? pulses. The repetition rate of this cavity was 16.7MHz,
but a much higher repetition rate can be obtained using a lin-
ear cavity in which the saturable absorber is placed directly on
the waveguide facet. As an example, according to the saturation
intensity of the nanotube absorber, 1IGHz operation could be fea-
sible with an intracavity average power of about 100mW. Such
a power level was already demonstrated in similar waveguide
lasers operated in CW.”

Conclusion

We demonstrated passive mode locking of a femtosecond-laser-
written waveguide laser by using a saturable absorber based on
CNTs. Our work expands the capability of femtosecond laser
writing for manufacturing complex photonic devices. An up-
graded version of this technology, whereby a CNT absorber is
incorporated into a monolithic laser structure, could provide
very compact mode-locked laser sources with gigahertz repeti-
tion rates.
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