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Abstract

We review recent work on Raman spectroscopy of graphite and graphene. We focus on the origin of the D and G peaks and the second order
of the D peak. The G and 2D Raman peaks change in shape, position and relative intensity with number of graphene layers. This reflects the
evolution of the electronic structure and electron–phonon interactions. We then consider the effects of doping on the Raman spectra of graphene.
The Fermi energy is tuned by applying a gate-voltage. We show that this induces a stiffening of the Raman G peak for both holes and electrons
doping. Thus Raman spectroscopy can be efficiently used to monitor number of layers, quality of layers, doping level and confinement.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Graphene is the two-dimensional (2D) building block for
carbon allotropes of every other dimensionality. It can be
stacked into 3D graphite, rolled into 1D nanotubes, or wrapped
into 0D fullerenes. Its recent discovery [1–3] completes the
carbon-family. This finally opens the opportunity to study
experimentally its electronic and phonon properties, which so
far had to be inferred from theory.

In general, carbon-based materials play a major role
in today’s science and technology and the discovery of
graphene is the last of a long string of continuous advances
in the science of carbon. These include, for example, the
chemical vapour deposition of diamond [4], the discovery
of fullerenes [5] and carbon nanotubes [6–8], and mastering
the properties of amorphous and disordered carbons [9–12],
to span, on demand, almost all the range from graphite
to diamond to carbon polymers [9–17]. Indeed, amorphous
and diamond-like carbons (DLC) are currently used in
many every-day life applications, such as, for example,
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magnetic hard disk coatings, wear protective and anti-
reflective coatings for tribological tools, engine parts, razor
blades and sunglasses, biomedical coatings (such as hips or
stents) and microelectro-mechanical systems [9,10]. Graphitic
carbon and, to an extent, carbon nanotubes, are also utilized
in batteries [18]. Applications in field emission displays,
microwave amplifiers, transistors, supercapacitors, structural
and conductive composites, photonic devices although all
well beyond the proof-of-principle stage, have yet to make
it to market. One of the main advantages of graphene is
the possible advent of a planar technology, compatible with
existing manufacturing processes [1].

A key requirement for carbon research and applications is
the ability to identify and characterize all the members of the
carbon family, both at the lab- and at mass-production scale. To
be appealing, a characterization tool must be nondestructive,
fast, with high resolution and give the maximum structural and
electronic information. Raman spectroscopy provides all these.
It is the backbone of research in such diverse fields, ranging
from physics, to engineering, chemistry and biology. Indeed,
most of the papers published every year on carbon materials
have at least a Raman spectrum in them [19].

Raman spectroscopy can thus become the standard also in
the fast growing field of graphene. One should remember that
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in the process of making graphene, be it from mechanical
cleavage [1,2], “expitaxial growth” [20,21], chemical vapour
deposition [21,22], chemical exfoliation [23], all sorts of carbon
species can in principle occur, similarly to what happens
when making nanotubes. Unwanted by-products and structural
damage can also be created while shaping graphene into
devices. It would thus be advisable to have a structural
reference, monitored, for example, by Raman spectroscopy,
as common denominator to compare the materials used by
different groups. This is standard practice in the field of
nanotubes and amorphous and diamond-like carbons [19]. In
the case of nanotubes, other optical structural characterization
techniques, such as photoluminescence excitation spectroscopy,
are now very popular [24], as ellipsometry or XPS are in
amorphous and diamond like carbons [25]. It is thus foreseeable
that other optical techniques (maybe even simpler than Raman
spectroscopy) will become available also for graphene, once the
field expands experimentally.

The toll for the simplicity of Raman measurements is paid
when it comes to spectral interpretation. The Raman spectra
of all carbon systems show only a few prominent features,
no matter the final structure, be it a conjugated polymer
or a fullerene [19]. The spectra appear deceivingly simple:
just a couple of very intense bands in the 1000–2000 cm−1

region and few other second-order modulations. However,
their shape, intensity and positions allow to distinguish a
hard amorphous carbon, from a metallic nanotube, giving
as much information as that obtained by a combination of
other lengthy and destructive approaches [19]. The peculiar
dispersion of the π electrons in graphene is the fundamental
reason why Raman spectroscopy in carbons is always resonant
and, thus, a powerful and efficient probe of their electronic
properties, not only of their vibrations [19]. This explains why
the interpretation of the Raman spectra of graphitic materials
was investigated for almost 40 years [19,26] and why intense
effort has been put towards the Raman measurement of few-
layer graphite samples [27,28], even before the discovery of
graphene.

2. D and G peaks, double resonance and Kohn anomalies

Fig. 1 compares the Raman spectra of a few representative
carbon materials: graphite, metallic and semiconducting
nanotubes and high and low sp3 amorphous carbons, all
measured for visible excitation. Fig. 2 plots the D peak position
as a function of excitation energy for defected graphite.

The main features in the Raman spectra of carbons are
the so-called G and D peaks, which lie at around 1560 and
1360 cm−1 respectively for visible excitation. In amorphous
carbons a peak at around 1060 cm−1 (T peak) is seen in
UV excitation [14]. Except for UV excitation, the Raman
spectra of carbon films are dominated by the sp2 sites, because
visible excitation always resonates with the π states. Thus even
for highly sp3 amorphous carbon samples the visible Raman
spectra are due to sp2 vibrations. Only for diamond or samples
containing a significant fraction of diamond phase, the diamond
sp3 peak at 1332 cm−1 is seen [31]. The cross-section for
Fig. 1. Raman spectra of graphite, metallic and semiconducting carbon
nanotubes, low and high sp3 amorphous carbons.

Fig. 2. D peak dispersion as function of excitation energy [39].

the amorphous sp3 C–C vibrations is negligible for visible
excitation, thus its Raman signature can only be seen for UV
excitation [14]. Indeed, the cross-section for graphite at 514 nm
is ∼55 times higher than that of diamond [32] and hydrogenated
amorphous carbon has a 230 times higher cross-section than
diamond [33].

The assignment of the D and G peaks is straightforward in
the “molecular” picture of carbon materials. These bands are
present in all poly-aromatic hydrocarbons [34,35]. The G peak
is due to the bond stretching of all pairs of sp2 atoms in both
rings and chains. The D peak is due to the breathing modes
of sp2 atoms in rings [13,26,34]. However, the “solid-state”
approach to the interpretation of these bands has undergone a
debate, which lasted several decades, with some aspects yet to
be clarified.

The D peak was first attributed to an A1g breathing mode
at K , activated by the relaxation of the Raman fundamental
selection rule q = 0 [26]. It was then linked to maxima in the
vibrational density of states of graphite at M and K points [36,
37]. However, this does not account for the dispersion of the D
position with photon energy (Fig. 2 [38,39]), why the D peak
overtone at ∼2710 cm−1, seen even where no D peak is present,
is dispersive, or why the I (D)/I (G) ratio is dispersive [38,39].
Phonon confinement does not explain why the D mode is more
intense than other modes closer to Γ with smaller ∆q. It also
does not explain why the D mode is seen in disordered graphite
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Fig. 3. Double resonance scheme for the D′ peak (close to Γ ) and the D peak
(close to K) [41]. EL is the incident laser energy.

with in plane correlation length, La, as big as 30 nm [40],
while Heisenberg indetermination would limit the participating
phonons to a much narrower ∆q range around Γ [13].

Ref. [39] empirically proposed that the D peak arises
as resonant Raman coupling, in which there is a strong
enhancement of the Raman cross-section of a phonon of
wavevector q, when it equals the wavevector k of the electronic
transition excited by the incident photon (k = q “quasi-
selection rule” [13]). However, the physical reason for this
“quasi-selection rule” was unclear and this did not yet explain
why, amongst all phonons satisfying this condition, only those
on one particular optical branch are seen.

Refs. [41,42] identified double resonance (DR), as the
activation mechanism.

Within DR, Raman scattering is a fourth order process [41],
Fig. 3. The activation process for the D peak is shown in
Fig. 3(b). (i) a laser induced excitation of an electron/hole pair;
(ii) electron–phonon scattering with an exchanged momentum
q ∼ K ; (iii) defect scattering; (iv) electron/hole recombination.
The DR condition is reached when the energy is conserved in all
these transitions [41]. A similar process to Fig. 3(b) is possible
intra-valley, as shown in Fig. 3(a). This activates phonons with
a small q, resulting in the so-called D′ peak, which can be seen
around ∼1620 cm−1 in defected graphite [36].

Besides the activation mechanism, the phonon dispersion
around K is crucial for the correct interpretation of the Raman
D peak. Once established that this peak is attributed to phonon
branches around K [26,37,43–47,13,14,19,41], its dispersion
with excitation energy will depend on the precise shape of these
branches [41,48].

Graphene has four possible phonon branches around K
(the three shown in Fig. 4, plus a lower lying optical branch
crossing the K point at ∼800 cm−1), and they should all be
Fig. 4. Calculated phonon dispersion of graphene, from Ref. [48], compared
with the experimental data on graphite from Ref. [47].

Raman active if their Electron Phonon Couplings (EPC) are
ignored [41,39,44–46]. But, it is a fact that only the D peak
has significant intensity [26]. In the molecular approach [43,
13,14], the D peak is assigned to the branch starting from
the K–A′

1 mode, based on its symmetry and on its large
Raman cross-section in aromatic molecules of increasing size.
However, this attribution was initially disputed. In fact, the
measured linear D peak dispersion (Fig. 2) seemed at odds with
the flat, or even negative, slope of the highest optical branch
near K , given by previous calculations [43,49–52]. Because
of this, initially many authors [39,44,41,45,46] assigned the D
peak to the doubly degenerate linearly dispersive 1200 cm−1E′

mode at K. Ref. [48] finally confirmed the attribution of
the D peak to the highest optical branch starting from the
K–A′

1 mode [26,43,13,14]. Indeed, the A′

1 branch has, by
far, the biggest electron–phonon coupling amongst the K
phonons [53]. Second, this branch is linearly dispersive, Fig. 4.
A Kohn anomaly at K is the physical origin of this dispersion,
which is in agreement with the measured D peak dispersion of
Fig. 2 [39].

In general, atomic vibrations are partially screened by
electronic states. In a metal this screening can change rapidly
for vibrations associated to certain points of the Brillouin Zone
(BZ), entirely determined by the shape of the Fermi surface.
The consequent anomalous behaviour of the phonon dispersion
is called Kohn anomaly [54]. Kohn anomalies may occur only
for wavevectors q such that there are two electronic states k1
and k2 = k1 + q both on the Fermi surface [54]. In graphene,
the gap between occupied and empty electronic states is zero
at the two BZ points K and K′. Since K′

= 2K, these are
connected by the vector K. Thus, Kohn anomalies can occur
for q = Γ or q = K. Ref. [48] demonstrated that graphene has
two significant Kohn anomalies for Γ–E2g and K–A′

1, Fig. 4.
It is thus impossible to derive the phonon branches at Γ and

K by force constant approaches based on a finite number of
force constants, as often done [43,45,46,49–51].

These results have also implications for carbon nanotubes.
Due to their reduced dimensionality, metallic tubes display
much stronger Kohn anomalies than graphite. This gives
phonon softening, implying that folded graphite does not
reproduce the phonon dispersions of metallic tubes [55,53,51].
The presence of Kohn anomalies in metallic tubes makes their
Raman spectra different from semiconducting tubes [53,55].

To summarize, the current understanding is that the D peak
is due to LO phonons around K [13,26], is active by double
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resonance [41,42] and is strongly dispersive with excitation
energy due to the Kohn Anomaly at K [48].

3. Electron–phonon coupling from phonon dispersions and
Raman line widths

Electron–phonon coupling (EPC) is a key physical
parameter in graphene and nanotubes. Ballistic transport,
superconductivity, excited state dynamics, Raman spectra
and phonon dispersions all fundamentally depend on it. In
nanotubes, the optical phonons EPC are also extremely relevant
since electron scattering by optical phonons sets the ultimate
limit to high field ballistic transport [56–60]. Many tight-
binding calculations of optical phonons EPC in graphene and
nanotubes are reported in literature, with contrasting results [57,
58,61–65] (see Table II of Ref. [55] for a summary).

Refs. [48,53] presented DFT calculations of the graphene
optical phonons EPC, and, most importantly, a strategy for
the experimental determination of the EPCs. Ref. [48] proved
that a simple analytical description of the Kohn anomalies in
graphene is possible. The anomalies are revealed by two sharp
kinks in the phonon dispersion, Fig. 4. The slope of these kinks
is proportional to the ratio of the square of the electron–phonon
coupling matrix element and the π bands slope at K [48]:

SlopeLO(Γ ) =

√
3a2

0

8MωΓ
·

EPC(Γ )2

vF
(1)

Slope(K ) =

√
3a2

0

8MωK
·

EPC(K )2

vF
(2)

where M is the carbon atomic mass, a0 = 2.46 Å is the
graphite lattice spacing, vF = 8.38 × 105 m/s is the Fermi
velocity from DFT and h̄ωΓ = 196 meV [48]. Note that recent
experimental determinations of vF give 9.1 × 105 m/s [66]
−1.1 × 106 m/s [67], in excellent agreement with DFT.
Furthermore [48]:

SlopeLO(Γ )ωΓ

Slope(K )ωK
= 2. (3)

The phonons around Γ were measured by several groups
with close agreement [68–70,47]. Fig. 4 compares the
calculated phonon dispersion of Ref. [48] with the most
recent Inelastic X ray scattering data from Ref. [47]. From
Eq. (1) and a quadratic fit to the data of Ref. [47], we get
SlopeLO(Γ ) ∼ 133 cm−1 Å, and, thus, the experimental
EPC(Γ ) ∼ 39 (eV/Å)2. The agreement with the DFT value ∼

46 (eV/Å)2 is excellent. The experimental phonon dispersions
around K are more scattered, so Eq. (3) can be used to estimate
EPC(K ) from EPC(Γ ).

An alternative strategy for EPC measurement is based on
the analysis of the G peak linewidths. The optical phonons
EPC are the major source of broadening for the Raman G
band in graphite, graphene and for the G− peak in metallic
nanotubes [53,55]. In a perfect crystal, the line-width of a
phonon γ is determined by its interaction with other elementary
excitations. Usually, γ = γ an

+ γ EPC
0 , where γ an is due to the

interaction with other phonons and γ EPC
0 with electron–hole
pairs. γ an is given by anharmonic terms in the interatomic
potential and is always there. γ EPC is determined by the EPC
and is present only in systems where the electron gap is zero. If
the anharmonic contribution is negligible or otherwise known,
measuring the line width is the simplest way to determine the
EPC. Form the Fermi golden rule the EPC contribution to the
G peak FWHM is given by a simple analytical formula [53]:

γ EPC
0 =

√
3a2

0

4M
·

EPC(Γ )2

v2
F

. (4)

Provided the conservation of energy and momentum is
fulfilled (i.e. q 6 ωΓ /vF ). Otherwise, γ EPC

0 = 0. This is
satisfied by the G peak of undoped graphite and graphene. On
the other hand, the double resonant D′ mode close to Γ does not
satisfy this. Indeed, the D′ peak is sharper than the G peak [71].

The experimental FWHM(G) was measured on a single-
crystal graphite ∼13 cm−1 [55,72]. Temperature-dependent
measurements show no increase of FWHM(G) in the 2–900 K
range [72]. Accounting for the Raman spectrometer resolution
of ∼1.5 cm−1, this implies an an-harmonic contribution lower
than the spectral resolution. Thus, γ EPC(G) ∼ 11.5 cm−1.
Then, from Eq. (5), EPC(Γ )2

∼ 47 (eV/Å)2. This compares
very well with DFT, again confirming that γ an (G) is small. If
we combine (4) with (1) we get:

vF =
2SlopeLO(Γ )ωΓ

γ EPC . (5)

This provides a direct measurement of the Fermi velocity
in terms of experimental quantities related to the phonon
spectrum. For the experimental data reported here we get vF ∼

7 × 105 m/s in excellent agreement with direct experimental
determinations from ARPES or magneto-transport [66,67].

Finally Refs. [30,73] extended Eq. (4) for finite doping
(εF 6= 0, being εF the Fermi level):

γ EPC(εF ) = γ EPC
0 { f [−(hωΓ /2 + εF )]

− f (hωΓ /2 − εF )} (6)

where f (x) is the Fermi–Dirac distribution of argument x .
Note that, even for zero doping, Eq. (6) predicts a significant

γ EPC decrease with temperature. Since the anharmonic
contribution to the FWHM is much smaller than γ EPC,
Eq. (7) predicts a net decrease of FWHM(G) with temperature,
which we recently observed [72]. This is different from what
happens in most materials, where FWHM always increase with
temperature.

4. The Raman spectrum of graphene and graphene layers

Fig. 5 compares the Raman spectra of graphene and bulk
graphite measured at 514.5 nm excitation [29]. The two most
intense features are the G peak at 1580 cm−1 and a band at
∼2700 cm−1, historically named G ′, since it is the second
most prominent band always observed in graphite samples [38].
However we now know that this band is the second order of the
D peak. Thus we believe it is more convenient to refer to it as
2D peak [29]. Fig. 5 also shows another peak at ∼3250 cm−1.
Its frequency is higher than double the G peak frequency, thus
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Fig. 5. (a) Comparison of the Raman spectra of graphene and graphite measured at 514.5 nm. (b) Comparison of the 2D peaks in graphene and graphite.
it is not its second order. This peak, is in fact the second order
of the intra-valley D′ peak of Fig. 3(a), thus, for consistency,
we call it 2D′.

Fig. 5(b) shows a significant change in the shape and
intensity of the 2D peak of graphene compared to bulk graphite.
The 2D peak in bulk graphite consists of two components
2D1 and 2D2 [36,38], roughly 1/4 and 1/2 the height of
the G peak, respectively. Graphene has a single, sharp 2D
peak, roughly four times more intense than the G peak [29].
The original results of Ref. [29] were then confirmed in the
similar experiments reported in refs. [74,75]. However, the
layer counting in [74,75] was not independently confirmed by
TEM, unlike Ref. [29]. The uncertain number of layers is quite
evident in Ref. [74], where similar Raman spectra are reported
for a varying number of layers.

Fig. 6 plots the evolution of the 2D band as a function of the
number of layers for 514.5 nm and 633 nm excitations. These
immediately indicate that bi-layer graphene has a much broader
and upshifted 2D band with respect to graphene. This band is
also quite different from bulk graphite. It has four components,
2D1B , 2D1A, 2D2A, 2D2B , two of which, 2D1A and 2D2A,
have higher relative intensities than the other two, as indicated
in Fig. 7. Fig. 6(c) and (d) show that a further increase of the
number of layers leads to a significant decrease of the relative
intensity of the lower frequency 2D1 peaks. For more than
five layers the Raman spectrum becomes hardly distinguishable
from that of bulk graphite. Thus Raman spectroscopy can
clearly identify a single layer, from bi-layer from few (less than
five) layers. This also explains why previous experiments on
nano-graphites, but not individual or bi-layer graphene, did not
identify these features [28,76].

SWNTs show a sharp 2D peak similar to that of
graphene [77], Fig. 1. Despite the similarities, it is important
to note that there are major differences between the graphene
and SWNT Raman spectra, which allow to easily distinguish
these materials. Indeed, confinement and curvature split the two
degenerate modes of the G peak in SWNTs, resulting in G+ and
G− peaks, [55,77], in contrast to graphene.

Ref. [29] explained why graphene has a single 2D peak, and
why this splits in four components in bi-layer graphene, which
then evolve in only two components in bulk graphite. Several
Fig. 6. (a) and (b) Evolution of G peak as a function of number of layers for
514 and 633 nm excitations, (c) and (d) Evolution of the 2D peak as a function
of number of layers for 514 and 633 nm excitations.

authors previously attempted to explain the double structure of
the 2D peak in graphite [38,36,39,28,78], however they always
neglected the evolution of the electronic bands with the number
of layers, which is, on the contrary, a key fact.

The 2D peak in graphene is due to two phonons with
opposite momentum in the highest optical branch near the K
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Fig. 7. The four components of the 2D peak in bi-layer graphene.

point of the Brillouin zone (A′

1 symmetry at K). Fig. 6(c)
and (d) show that this peak changes in position with varying
excitation energy, at twice the rate of the first order D peak. This
is due to double resonance, which links the phonon wavevectors
to the electronic band structure [41]. The resulting 2D Raman
frequency is twice the frequency of the scattering phonon,
whose q is determined by the DR condition. Fig. 3(b) can
be used for the 2D peak, but substituting the electron-defect
scattering with electron–phonon scattering with an exchanged
momentum –q, which allows to satisfy the Raman fundamental
selection rule for second order scattering (q + (−q) = 0). Only
phonons satisfying DR conditions with momentum q > K ,
along the Γ–K–M direction (K < q < M) contribute [29].
The other two possible DR phonons, with q < K and q ∼ K ,
give a much smaller contribution to the Raman intensity. In
fact, the q < K phonon involves a smaller portion of the
phase–space because of the band-structure trigonal warping and
the q–K phonon has a zero electron–phonon coupling for this
transition, as discussed in Ref. [48].

The four components of the 2D peak for the bi-layer could,
in principle, be attributed to two different mechanisms: the
splitting of the phonon branches [13,36,38,40] or the spitting
of the electronic bands [13]. Form DFT [48,29] the splitting
of the phonon branches is <1.5 cm−1, much smaller than the
experimentally observed 2D splitting. Thus, this is solely due
to electronic bands effects. In the bi-layer, the interaction of
the graphene planes causes the π and π∗ bands to divide in
four bands, with a different splitting for electrons and holes.
The incident laser light can couple only two pairs of the four
bands [29]. On the contrary, the two almost degenerate phonons
in the highest optical branch can couple all the electron bands
amongst them. The resulting four processes involve phonons
with momenta q1B , q1A, q2A, and q2B , corresponding to
phonons with different frequencies, due to the strong dispersion
of the phonon bands around K. These produce the four peaks
in the Raman spectrum of bi-layer graphene. However, the
phonons q1A and q2A scatter between bands of the same type
and are associated to processes more intense than q1B and q2B ,
since the portion of the phase space where the DR condition is
satisfied is larger [29].

5. The Raman spectrum of doped graphene: Breakdown of
the adiabatic Born–Oppenheimer approximation

Doping changes the Fermi surface of graphene. This moves
the Kohn anomaly away from q = 0. Thus, since first order
non-double resonant Raman scattering probes q = 0 phonons,
intuitively we expect a stiffening of the G peak. Indeed,
refs. [30,79] reported that the G peak of graphene responds
to doping. The doping level was controlled by applying a
gate voltage. The G peak upshifts for both holes and electron
doping [30,79].

Fig. 8(a) and (b) reports the G peak position and FWHM
measured at 200 K. The trend of FWHM is fully consistent with
the prediction of Eq. (6). The upshift of the G peak with doping
can be fully understood only by extending the DFT calculations
of Ref. [48] to include beyond Born–Oppenheimer corrections
to the dynamic matrix [30]. The detailed theoretical analysis of
this case is reported in Refs. [73,80,81].

The adiabatic Born–Oppenheimer approximation (ABO) is
standard to describe the interaction between electrons and
nuclei since the early days of quantum mechanics [82–84].
ABO assumes that the lighter electrons adjust adiabatically
to the motion of the heavier nuclei, remaining at any time in
their instantaneous groundstate. ABO is well justified when
the energy gap between ground and excited electronic states
is larger than the energy scale of the nuclear motion. The
use of ABO to describe lattice motion in metals is, therefore,
questionable. In spite of this, ABO has proven effective for
the accurate determination of chemical reactions, molecular
dynamics and phonon frequencies in a wide range of metallic
systems.

Quite remarkably ABO fails in graphene [30]. Indeed, the
inverse of the G-peak pulsation is ∼3 fs, which is much
smaller than the typical electron–momentum relaxation time.
This is due to impurity, electron–electron and electron–phonon
scattering with non-zero momentum phonons and was
estimated as few hundreds fs from electron-mobility in
graphene [85] and ultra-fast spectroscopy in graphite [86,87].
Thus electrons do not have time to relax their momenta to reach
the instantaneous adiabatic ground state, as assumed in ABO.
At zero T , the G peak shifts can be described analytically [73]:

h̄∆ω(G) =
AEPC(Γ )2

π Mω0(G)h̄v2
F

×

[
|εF | +

h̄ω0(G)

4
ln

(∣∣∣∣∣ |εF | −
h̄ω0(G)

2

|εF | +
h̄ω0(G)

2

∣∣∣∣∣
)]

(7)

where A = 5.24 Å
2

is the graphene unit cell area and ω0(G) is
the frequency of the G peak in the undoped case. The result of
Eq. (7) can be extended to finite temperature, see Ref. [30,73].
Fig. 8 show the excellent agreement of the nonadiabatic finite
T calculations with experiments.

Due to double resonance, the D peak will still be described
by ABO, even in the presence of moderate doping, since the D
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Fig. 8. (a). G peak position as a function of electron concentration at 200 K. (dots) measurements; (horizontal-dashed line) adiabatic Born–Oppenheimer; (line)
finite-temperature nonadiabatic calculation. The minimum observed in the calculations at ∼1012 cm−2 occurs when the Fermi Energy equals half of the phonon
energy. (b) FWHM(G) at 200 K as a function of electron concentration. (dots) measured; (line) theoretical FWHM of a Voigt profile obtained from a Lorentzian
component given by Eq. (7), and a constant Gaussian component of ∼8 cm−1 [30].
peak phonons are away from K , unlike the G peak phonon,
which is always at q = 0. For significant doping levels,
however, the effects of charge transfer will be felt. High hole
doping results in phonon stiffening, while high electron doping
causes phonon softening [73,88]. The total response to doping
will be the sum of the charge transfer and nonadiabatic effects.
In practice, for doping levels below 0.6 eV, this just results in a
slight asymmetry of the G peak stiffening [73]. Thus, since the
G peak always stiffens, while the 2D peak responds differently
to holes and electron doping [89], by monitoring both G and
2D it is in principle possible to estimate the doping level.

Another consequence of doping is the significant decrease of
I (2D)/I (G), with respect to the doped case [89].

Fig. 9 show that, for the same nonintentionally doped
graphene sample, we can have different G peak positions
and FWHM, as well as different I (2D)/I (G). This indicates
that inhomogeneous self-doping can happen. Indeed, if the
inhomogeneity happens over scales smaller than the Raman
spot size, an asymmetrical G peak can be seen [90].

This also happens when comparing the Raman spectra of
a graphene sample on a substrate, to that of a suspended
sample [29,90]. Even though the general features are the
same, the G peak is slightly downshifted and broader for the
suspended case, while the 2D peak is much more intense. This
is consisted with the decrease of self-doping upon removal of
the substrate [90]. However, the suspended sample also shows a
D peak. This indicates a small increase of disorder, as explained
in the next section.

6. Disordered graphite and graphene

In order to compare different samples and devices, or
different locations on the same sample, another crucial
parameter, besides doping, is the amount of disorder. For
multilayers assessing turbostraticity is also important.

We introduced a three-stage classification of disorder,
leading from graphite to amorphous carbons [13,14], which
allows to simply assess all the Raman spectra of carbons. The
Raman spectrum is considered to depend on:

(i) clustering of the sp2 phase;
(ii) bond disorder;

(iii) presence of sp2 rings or chains;
(iv) the sp2/sp3 ratio.

These factors act as competing forces on Raman spectra.
We defined an amorphization trajectory [13,14] ranging from
graphite to highly sp3 amorphous carbon in three stages:
(1) Graphite → nanocrystalline graphite;
(2) nanocrytsalline graphite → low sp3 amorphous carbon;
(3) low sp3 amorphous carbon → high sp3 amorphous carbon.

In the study of graphene, stages 1 and 2 are the most relevant
and are thus summarized here
(A) Stage 1: Graphite → nanocrystalline graphite

The seminal paper studying disorder in graphitic samples
is that of Tuinstra and Koening (TK) [26]. They noted that
the ratio of the D peak intensity to that of the G peak varied
inversely with La :

I (D)

I (G)
=

C(λ)

La
(8)

where C (488 nm) ∼ 4.4 nm from Refs. [26,91,92,44]. There
are few experimental verifications of TK where La is known
independently by X-ray diffraction (XRD) [26,93–97], and the
minimum La for which TK has been directly verified is ∼2 nm.
TK assumes that graphite becomes uniformly nanocrystalline.
However, for a system with mixed grain sizes, with volume



54 A.C. Ferrari / Solid State Communications 143 (2007) 47–57
Fig. 9. Raman measurements in different points of a graphene sample.
fractions X i and dimensions Lai , the effective La is given
by [13]:

1
LaEff

=

N∑
i

X i
1

Lai
. (9)

Thus, XRD weights more the bigger crystallites, while TK
will underestimate La due to the dominant effect of small
crystallites [93,95,98]. A recent study has fitted C(λ) ∼ 2.4 ×

10−10λ4 [97], using I (D)/I (G) as integrated areas ratio, rather
than peak height ratios as in [26,91,44]. Using the area ratio
gives different results since FWHM(D) increases much more
than FWHM(G) for decreasing La [16,93].

The original idea behind Eq. (8) was to link the D peak
intensity to phonon confinement. Thus, since the G peak is the
allowed phonon, the intensity of the nonallowed phonon would
be ruled by the “amount of breaking” of the selection rule. This
can be crudely estimated by the Heisenberg indetermination
∆q∆x ∼ h. Taking ∆x ∼ La , it is immediate to get Eq. (8).
However, we now know that the activation of the D peak is
due to double resonance and not just to phonon confinement.
Considering La as an average interdefect distance, one can still
assume that the higher the number of defects, the higher the
D peak intensity and, thus, the smaller La . However, as things
stand, a complete theory for the Raman intensity of the G and D
peaks and their second orders is still lacking and is the subject
of ongoing research [99]. Furthermore it would be ideal if a
quantitative link to the number or nature of the defects could be
established. This was not done in the past since the main interest
in nanographites and carbon fibres was to have a rule of thumb
estimation of disorder. However, in graphene the precise nature
of the disorder and defects is of great interest, and their presence



A.C. Ferrari / Solid State Communications 143 (2007) 47–57 55
Fig. 10. Schematic evolution of I (D)/I (G) as a function of disorder for
visible excitation. The maximum of this curve is taken as boundary between
nanocrystalline graphite and amorphous carbons [13].

can be linked to changes in the electrical characteristics. Thus a
more detailed investigation is certainly needed.

The main effects in the evolution of the Raman spectrum in
this stage are [13]:

(a) The D peak appears and I (D)/I (G) increases following
(8);

(b) D′ peak appears at ∼1620 cm−1;
(c) All peaks FWHM broaden due to disorder;
(d) The doublet structure of the D and 2D peak is lost.

For high disorder the broadening of the G and D′ peaks is
such that is often more convenient to consider a single G line,
for practical purposes, when comparing different samples or
the overall structural evolution of a given sample. The average
G peak position then moves from ∼1580 to ∼1600 cm−1.
The loss of three-dimensional ordering is indicated by the
disappearance of the doublet in the D peak and in its second
order [40].

Indeed, the doublet structure of the 2D peak has been
shown to be a good indication of c axis ordering, and thus of
turbostraticity. In particular, it was noted from early studies that
turbostratic graphite, (i.e. without the planar AB staking) has a
single 2D peak [40]. However, its FWHM is ∼50 cm−1 almost
double that of the 2D peak of graphene and is upshifted of
∼20 cm−1. Turbostratic graphite also often has a first order D
peak [40].
(B) Stage 2: From nanocrystalline graphite to mainly sp2

amorphous carbon
For an ever-increasing number of defects, including bond

length and angle disorder at the atomic scale, the phonon
modes will soften, particularly the G peak. The end of stage
2 corresponds to a completely disordered, almost fully sp2

bonded a-C consisting of distorted sixfold rings or rings of other
orders (with an upper limit of 20% sp3). A typical example is
sputtered amorphous carbon [100].

The main effects in the evolution of the Raman spectrum
are:

(a) G peak decreases from 1600 to ∼1510 cm−1;
(b) TK is no longer valid: I (D)/I (G) ∝ M ∝ L2
a ;

(c) I (D)/I (G) → 0;
(d) Increasing dispersion of the G peak.

Another effect is the absence of well-defined second-order
Raman peaks, but a small modulated bump from ∼2400 to
∼3100 cm−1, Fig. 1.

The breakdown of TK is clear from Fig. 1. Amorphous
carbons have a much smaller D peak intensity of what Eq. (8)
would predict. The “molecular picture” helps in understanding
what happens. For more disorder, clusters become smaller and
the rings fewer and more distorted, until they begin to open
up. As the G peak is just related to the relative motion of C
sp2 atoms, we can assume I (G) roughly constant as a function
of disorder. Thus, with the loss of sp2 rings I (D) will now
decrease with respect to I (G) and the TK relationship will no
longer hold. For small La , the D mode strength is proportional
to the probability of finding a sixfold ring in the cluster, i.e. to
the cluster area. Thus, in amorphous carbons the development
of a D peak indicates ordering, exactly the opposite to the
case of graphite [13,14]. This is expressed in (b) above by the
proportionality of I (D)/I (G) to M , the number of ordered
rings. This leads to a new relation for stage 2 [13], Fig. 10:

I (D)

I (G)
= C ′ (λ) L2

a
. (10)

Imposing continuity between (8) and (10), we find
C ′ (514 nm) ≈ 0.0055.

In disordered carbons the G peak position increases as
the excitation wavelength decreases, from IR to UV [14].
The dispersion rate increases with disorder. The G peak does
not disperse in graphite itself, nanocrystalline (nc)-graphite or
glassy carbon [13,14]. The G peak only disperses in more
disordered carbons, where the dispersion is proportional to
the degree of disorder. The G peak dispersion separates the
materials into two types. In materials with only sp2 rings, the
G peak dispersion saturates at a maximum of ∼1600 cm−1,
the G position in nanocrystalline-graphite. In contrast, in those
materials also containing sp2 chains (typical of DLCs), the G
peak continues to rise past 1600 cm−1 and can reach 1690 cm−1

at 229 nm excitation [14]. The D peak always disperses with
excitation energy in all carbons [13,14]; however, the more
disorder the less dispersion, opposite of the G peak [14].

7. Edges and ribbons

The sample edges can be always seen as defects. Thus, when
the laser spot includes them, even if the bulk sample is perfect,
a D peak will appear. Fig. 5 shows no D peak at the centre of
a typical graphene layer, proving the absence of a significant
number of defects in the structure. A single D peak is only
observed at the sample edge, Fig. 11, consistent with the single
2D peak discussed in Section 4. On the other hand the D peak
at the edge of graphite consists of two peaks D1 and D2 [36,38].

A detailed multiwavelength Raman investigation of graphene
nanoribbons as a function of width should be done in the near
future. However, it is immediate to think that a TK-like relation
will link I (D)/I (G) to the reciprocal of the ribbon width, at
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Fig. 11. Raman spectra of graphite and graphene edges.

least for ribbons significantly smaller than the laser spot. In this
case, the smaller the ribbons, the more the edges, thus the big-
ger the D peak. However, the D peak could also increase due to
disorder. Thus, two ribbons having similar widths, but different
amounts of disorder will have different I (D)/I (G).

For very small ribbons, phonon and electron confinement
effects will become relevant and new modes will appear.
A detailed theoretical and experimental investigation of the
phonons in small ribbons is thus needed.

Finally the D peak intensity is maximum for polarization
parallel to the edges, and is in principle selective to the edges
chirality [28,101]. A detailed investigation will be reported
later [90].

8. Conclusions

A review of the Raman spectra of graphite and graphene
was presented. The G and 2D Raman peaks change in shape,
position and relative intensity with number of graphene layers.
This reflects the evolution of the electronic structure and
electron–phonon interactions. Doping upshifts and sharpens the
G peak for both both holes and electrons. Disorder can be
monitored via the D peak. Thus Raman spectroscopy can be
efficiently used to monitor a number of layers, quality of layers,
doping level and confinement in graphene nanostructures.
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