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Graphene saturable absorber power scaling laser
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Abstract: A solution-processed graphene-film coated on a fiber-based connector is used for
stable, mode-locked femtosecond-duration pulses with 16 mW average output power.
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1. Introduction

Graphene and carbon nanotubes (CNTSs) are promising saturable absorbers (SAs) for mode-locking of fiber lasers
[1-3]. Broadband operation is achieved with CNTs by combining tubes of different diameters [4], while it is an intrinsic
property of graphene, due to the linear dispersion of Dirac electrons [5]. This, along with the ultrafast recovery time [6],
and low saturation fluence [1, 7], makes graphene an excellent broadband SA [1,7-9]. A variety of approaches have
been used to make graphene-based SA (GSA) mode-locked lasers [10], with output power ranging, e.g., from~3W [11]
for a graphene oxide SA to~270mW for a chemical vapor deposited GSA [12], generated in solid-state lasers [11,12],
to few-mW directly generated from fiber oscillators with GSAs coupled between fiber connectors [10]. The most
commonly used GSA for fiber lasers [10] are fabricated from liquid phase exfoliation (LPE) of graphite [13, 14] in
water [15] or organic solvents [13, 16]. Graphene produced by LPE can be embedded into polymer composites [2],
which can be integrated into various systems [1,2,5,7, 8]. Here we use LPE graphene in a polymer-free film coated
onto a fiber based connector. This reduces non-saturable losses, making it suitable for high average-power applications
and device miniaturization [8]. Based on this, we demonstrate a mode-locked fiber laser, achieving stable sub-250fs
pulses with a repetition rate of 21 MHz. The output power ranges from~0.8 mW to more than 15 mW.

2. Results
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Fi g. 1. (a) Raman spectrum of dropcast-graphene and GSA. (b) Linear absorbance and (c) Nonlinear transmittance.

We fabricate a GSA by exfoliating graphite flakes via ultrasonic treatment in a solution of deionised water and
sodium cholate (SC) (0.9wt%) [1, 15], followed by ultracentrifugation at 10000 rpm for 1 hour. The resulting top 70%
dispersion is then filtered in vacuum through a nitrocellulose membrane (Millipore 100 nm pore-size filter). This blocks
the flakes, while allowing water to pass through, resulting in a film on the top of the membrane. This is then transferred
on the tip of a fiber connector and the membrane is dissolved in an acetone/water mixture. A control sample for optical
characterization is also prepared by transferring the film on a quartz plate and annealing (~90°C, to improve adhesion)
for 1 hour, followed by dissolution of the filter in acetone/water. To investigate the flakes’ quality before and after film
fabrication, and to monitor defects, we measure the Raman spectra at 457, 514.5, and 633 nm. Fig.1(a) plots a typical
Raman spectrum of a drop-cast graphene dispersion on a Si wafer and the resulting film. Besides the G and 2D peaks,
significant D and D’ bands as well as their combination mode D+D’ at ~2950 cm™! are also present [17]. We assign
the D and D’ peaks to the sub-micrometer edges of our flakes [18], rather than to disorder within the flakes. This
is corroborated by a multi-wavelength Raman analysis: the resulting G peak dispersion is below 0.05cm™!/nm [16].
There is no significant change in the spectrum of the film with respect to that of the drop-cast dispersion. Thus, the
fabrication process does not affect the structure or quality of the flakes. The 2D peak is still single Lorentzian, thus,
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even if the flakes are multi-layers, they are electronically decoupled and, to a first approximation, behave as a collection
of single layers [17, 19]. The GSA has a featureless linear absorption from 500 to 2000 nm, Fig.1(b), save the UV van
Hove singularity peaks [20], and~5.7% non-linear transmittance change at 1.5 um, Fig.1(c).
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Fig. 2. (a) Optical spectrum; (b) RF spectrum (c); Autocorrelation trace and (d) Average output power vs. pump power.

We use a ring cavity with 3 m erbium doped fiber (EDF), pumped by a 980 nm diode through a wavelength division
multiplexer. Unidirectional operation is enabled by an optical isolator. A polarization controller is used for mode-
locking optimization. Output of the laser is provided by the 20% port of a coupler. The total cavity length is~9 m.
Mode-locking starts at ~23 mW pump power, with~0.8 mW output power at ~21 MHz repetition rate. A typical
spectrum is shown in Fig.2(a), with the corresponding intensity autocorrelation trace in Fig.2(c). The full width at half
maximum (FWHM) is 406 fs. Assuming a sech? fit, deconvolution gives 231 fs pulse duration. The radio frequency
(RF) spectrum in Fig.2(b) gives a signal-to-noise ratio>80 dB indicating low-amplitude fluctuations, thus stable mode-
locking [21]. Mode-locked operation can be maintained up to a pump power~350 mW. The output power scales
linearly with pump power as for Fig.2(d), with a maximum~16 mW. The output power is limited by the maximum
power of our pump laser, and higher average power would be possible using a higher power laser diode.

3. Conclusions
We demonstrated a mode-locked fiber laser using a graphene film saturable absorber. The easy integration of the GSA
into the fiber connector shows potential in the development of next generation compact ultrafast fiber lasers.
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