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Electron Transport and Hot Phonons in Carbon Nanotubes
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We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in
metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport
scattering length, which we validate by accurate first principles calculations on (6,6) and (11, 11)
nanotubes. The comparison of our results with the scattering lengths fitted from experimental /-V curves
indicates the presence of a nonequilibrium optical phonon heating induced by electron transport. We
predict an effective temperature for optical phonons of thousands Kelvin.
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Single wall carbon nanotubes (SWNTs) have unique
properties that make them strong candidates for future
electronic devices. They can act as one-dimensional quan-
tum wires with ballistic electron transport [1-3]. Because
of the strong C-C bond, they can carry the highest current
density of any material before they break. This makes them
the best candidates as interconnects in integrated circuits
and for high performance field effect transistors. It is thus
essential to understand what ultimately limits the high
current performance of nanotube devices. High-field trans-
port measurements have shown that electron-phonon cou-
pling limits the ballistic behavior [4—-6]. At high bias
(=0.2 V) electrons scatter with optical phonons, while at
low bias (<0.2 V) they scatter with acoustic phonons.
Ballistic transport is possible up to few hundreds nano-
meters in low bias, but the electron mean free path sig-
nificantly drops at high bias [4—6]. By constructing devices
smaller than the high-bias scattering length, a boost in
performance is achieved [7,8].

The Boltzmann theory is used in Refs. [4—6] to fit the
scattering length (I ;) from the measured /-V curves. It is
striking that the analysis of several SWNTs, with 1-3 nm
diameters, gives a similar lop ~ 10-15 nm for optical-
phonon backscattering [4—6]. Alternatively, the scattering
lengths could be derived knowing (i) the electron-phonon
coupling (EPC) and (ii) the phonon occupation during
transport. Thus, if the EPC is independently known, the
phonon occupation can be derived from the experimentally
fitted scattering length. A reliable determination of the
EPC is essential to apply this procedure.

Several attempts to determine the EPC using tight bind-
ing (TB) have been reported [4,6,9-13]. The predicted
EPCs are not reliable since they strongly depend on the
TB parametrization used. For example, for the graphene
unit cell and the E,, phonon, the maximum of the EPC
square at I' [DI™|> has been calculated to be 17, 42,
35/58, and 164 (eV/A)? in Refs. [9], [12,14], [10,14],
and [6], respectively. These numbers give an order of
magnitude spread in the calculated scattering length, this
being proportional to |[DF*|?. On the other hand, the
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optical-phonon EPCs were never directly measured. But
we recently showed that graphite EPCs can be directly
determined from the experimental phonon dispersions or
from the Raman D-peak dispersion [15]. The measured
EPCs are in excellent agreement with accurate density
functional theory (DFT) calculations [15]. This confirms
the reliability of DFT for determining the EPCs in graphitic
materials, such as SWNTs.

In this Letter, we demonstrate the key role of phonon
occupation in limiting the high-field transport in nano-
tubes. To do so, we use DFT to compute with high accuracy
the optical-phonon EPCs in (6, 6) and (11, 11) SWNTSs. We
demonstrate that curvature does not affect the EPCs in
SWNTs with diameters = 0.8 nm, such as those used in
transport measurements [4—8]. Then we prove that the
EPCs for SWNTs of arbitrary chirality can be derived
from those of graphite, by using a simple analytic formula.
We use our computed and measured [15] EPCs to obtain
the electron mean free path for optical phonon scattering in
high-field quasiballistic transport. We obtain the phonon
occupation by comparing our scattering length with the /,,
fitted in transport measurements.

SWNTs are identified by the chiral indices (n, m), giving
the chiral vector C,, = na; + ma,, with a; and a, the
graphene lattice vectors [16]. A SWNT is obtained by
folding graphene so that the two atoms connected by C,,
coincide. In real space, a SWNT is periodic along its axis
according to the translational vector T [16]. For diameters
= (.8 nm the electron states are very well described by the
folded graphene bands [17]. Thus, we can safely use zone
folding to describe the states relevant to charge transport.
The SWNT electron states correspond to the graphene
states having periodicity Cy,, i.e., such that k - C, =
2o, o being an integer. The SWNT electron states are
labeled by two-dimensional momentum vectors k, which
cut with a series of parallel lines the graphene Brillouin
zone (BZ) [16].

The SWNT optical phonon frequencies are modified by
the quantum confinement of electron states along the cir-
cumference [15,18,19]. For diameters = 0.8 nm, the de-
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viation of the SWNT phonon frequencies from folded
graphene is = 5% [19]. Such deviation has a negligible
impact on scattering lengths. Thus, we use zone folding to
describe SWNT phonon frequencies and eigenmodes, and
we label the phonons by a two-dimensional momentum
vector q in the graphene BZ. The SWNT electron and
phonon states are normalized in the one-dimensional
SWNT unit cell, with period T.

The decay time for an electron state k, band i, and
energy €y; into the electron band j and energy € q)j,
due to scattering with q or —q phonons in branch 7, and
with energy fiw,,, is given by the Fermi golden rule [20]:

qn>

1 27

o = m2|g(k+q)j,ki|2{6[6ki — €k+q), T hqu]nqn
qn

+ 8[€ki — €k+q)j — hqu](fl,qn + 1)}; (1)

where N is the number of ¢ points, the two Dirac 6
distributions describe the processes of phonon absorption
and emission, and ng, is the phonon occupation number.
For thermal equilibrium, ng, is the Bose-Einstein occupa-
tion factor ng, = [exp(hw,,/kgT) — 1]7'. Within DFT,
the EPC is defined as g +q)jki = D(k+q)jkiy// CMwy,),

where M is the atomic mass,
D+q)ki = (K + @, jIAVy, K, i), )

|k, i) is the electron state, and AVq,, is the Kohn-Sham
potential derivative with respect to phonon displacement.

For optical phonons, the phonon dispersion is much
smaller than the electron band dispersion. Thus, consider-
ing only phonon emission, i.e., only the second J, Eq. (1)
becomes

1 T
- = ZMw [Dcrq)jkil*Plew+q)(n—gy + 1),  (3)
n qn

where p[e(Hq) j] is the electron density of states for band j,
and q is fixed by €(1q); = €xi — hwgy-

For graphene, the electronic gap is zero for the 7 bands
at the two equivalent BZ points K and K’ = 2K. Metallic
SWNTs have electron states corresponding to the graphene
K and 2K points. For bias smaller than 1.0 V, the mobile
electrons belong to 7 bands near the Fermi energy €f.
Both the initial and final states, k and k + q, are close to K
or to 2K. The 7r bands can be considered linearly disper-
sive, crossing at e with slopes 8 and —f, with 8 =
5.52 AeV, and density of states plex+ql = T/Q2mp).
Phonons connect electron states near €5 only for q =~ T'
or for q = K; thus, in Eq. (3), @y, can be approximated by
wry, Or by wg,,. After the scattering, the electron can either
maintain its propagation direction (forward scattering) or
reverse it (backscattering). We thus have four possible
scattering processes; see Fig. 1. We label the corresponding
decay times 73, 75, 71, and 7§. The total decay time is
givenby 1/7=1/7% + 1/7% + 1/75 + 1/7§. To model
the transport with Boltzmann [4,5], one needs to know the

T bs K-bs

k k

FIG. 1. Conduction band electrons in a metallic SWNT. First
order decay induced by the emission of a phonon with frequency
wgq. An electron state can be scattered into the same band by
forward scattering (fs) or into another band by backscattering
(bs). The resulting four possible processes are labeled by the
phonon vector (I' or K) and by the type of scattering (fs or bs).
€ is the Fermi energy.

decay times for each individual process. Possible scattering
into higher energy bands is neglected. This assumption is
valid for electron energies lower than 23/d, d being the
tube diameter. Note that the electron-phonon scattering
processes involved in electron transport are entirely analo-
gous to those involved in Raman spectroscopy [15,21,22].
We now compute the SWNT EPCs by folding the cor-
responding graphene EPCs. We then demonstrate the va-
lidity of this approach, which, so far, has never been
proven. The EPC (D) for a SWNT of arbitrary chirality
can be obtained from the graphene EPC (D), using:
SID+qixl* = SIDgc+qinil® 4)
where § = a(z)\/g /2 is the graphene unit-cell surface, a, =
2.46 A is the graphene lattice spacing, and S = |C}, X T|
is the nanotube unit-cell surface [16]. Equation (4) comes
from Eq. (2), using the appropriate normalization of pho-
non and electron states. Combining all the previous results,
for metallic SWNTs, Eq. (3) becomes

1 _1 \/§“6|l§(k+q)/’,ki|2

T d o drMwy, B

(n_gn + 1), (5)

where d = C,,/m = agvn*> + nm + m? /1 is the diameter.
For electron states near er in graphene, |D|? is not
negligible only for the I' E;, and K Ajmodes [15]. For
optical phonons near I', the doubly degenerate E,, mode
splits into two almost longitudinal (LO) and transverse
(TO) modes. For small k', the corresponding EPCs are

ID(ngiT(9+q>w*,<K+k')7r|2 = (DpJell = cos(6 + 6)] (6)
|D~%I?‘<”{‘(?+q)77*,(K+k’)7T* = <E%>F[1 + cos(6 + 6]
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with @ the angle between k’ and q, 6’ the angle between
k'’ + q and q, and 77 and 77" are the lower and higher 7
bands [15]. + or — refer to the LO and the TO modes,
respectively. For the K — A} mode, we have

|D~(2K+k’+q’)77*,(K+k’)7r|2 = <D~%(>F(1 + cosd"),

N (7)
2 = (D% )p(1 — cosd"),

Dok k' + )7, (K +K!) 7

where 6" is the angle between k’ and k'’ + ¢’ [23]. From
our DFT calculations, (D})p = 45.60 (eV/A)? and
(D¥)r = 92.05 (eV/A)? [14,15]. These values reproduce
very accurately the EPCs extracted from the measured
graphite phonon dispersion [15].

From Egs. (6) and (7), we obtain the EPCs for all the
scattering processes in Fig. 1. The results are in Table I.
Note that, for metallic SWNTs, k’ and q or q’ are always
parallel to the axis, and 6, #’, and 8" are always equal to O
or 7. Thus, the results of Table I do not depend on chirality.

Using Eq. (5) and Table I, we can easily compute the
scattering length | (I = 78/h) for a generic metallic
SWNT:

_4r Ma)q,],B2
73 hallDE

In Refs. [4-6], phonons are assumed thermalized at room
temperature (n_q, =~ 0) and the contribution of forward
scattering is neglected. Thus, to compare with experiments,
we consider only backscattering and define /,, = (1 /I +
1/1%,,)"". Using the graphene phonon frequencies
(wr = 196.0 meV, wg = 161.2 meV) [15], we obtain
the results of Table II. In particular, we get a simple scaling
between scattering length and diameter:

®)

lay = aqnd/(n_qy + 1); Qqq

lop = 65d. 9)

To validate these results, we perform an explicit calcu-
lation of |D|? on (6, 6) and (11, 11) armchair SWNTs. DFT
calculations are done with the gradient corrected functional
of Ref. [24]. We use plane waves (40 Ry cutoff) and
pseudopotential approaches [25]. Electron states are occu-
pied with an Hermite-Gauss smearing of order 1 and a
width of 0.05 Ry [26]. EPC calculations are done using the
perturbative method of Ref. [27]. We use an hexagonal
supercell with a neighboring tube distance of 5 Aanda grid
of 16 k points with a logarithmic distribution around the K
point. In Table II we report the scattering lengths obtained
using the |D|?> computed explicitly for the two tubes.
Table II shows that the zone-folding results are quite
accurate for the 1.5 nm diameter tube, and only a <20%

TABLE I. |D|? between 7 states around K.
Backscattering Forward scattering
rLo I' TO K Lo I' TO K
2D} )r 0 2D r 0 2D} )r 0

difference is present for the smaller-diameter tube, due to
curvature effects.

Thus, Eq. (8), combined with our computed and mea-
sured graphite EPCs [15], provides an independent assess-
ment of the scattering lengths for the 1-3 nm diameter
SWNTs of Refs. [4—6]. However, the scattering length
reported in Refs. [4—6] is ~10-15 nm. This is 1 order of
magnitude smaller than what is predicted by Eq. (9). This
disagreement cannot be attributed entirely to the experi-
mental uncertainty in measuring the scattering lengths,
since three independent experiments on a variety of differ-
ent tubes obtained very similar results [4—6]. Also, it
cannot be ascribed to an error in the DFT EPCs, since
our computed EPCs reproduce very well those extracted
from the experimental graphite phonon dispersions or
from the Raman D-peak dispersion [15]. Thus, we con-
clude that the hypothesis of thermalized phonon occupa-
tion [n_g, = 0 in Eq. (8)] does not hold.

A significant phonon occupation n can explain the small
value of the measured scattering length /,,. This hot pho-
non generation can occur if, during high-field electron
transport, the optical-phonon excitation rate is faster than
their thermalization rate. With a high phonon occupation,
both phonon emission and absorption processes are equally
relevant. We can estimate the scattering lengths by assum-
ing that the phonon occupation 7 is independent of q and 7
and by summing the absorption and emission contribu-
tions. The scattering lengths are then obtained by substitut-
ing (n_q, + 1) with 2n + 1) in Eq. (8):

lop = 65d/(2n + 1). (10)

n in the 2.7-5 range is necessary to reconcile the scattering
lengths derived from the computed and measured EPCs
and form the fit of the measured /-V curves. This corre-
sponds to an effective temperature for the occupation of
optical modes = 6000 K. This temperature is related only
to the phonons directly excited by first order scattering and
not to other phonons; otherwise, the SWNT would melt.
Thus, during high-bias electron transport, the phonons are
not in thermal equilibrium.

TABLE II. Scattering lengths (in nanometers) for the pro-
cesses in the first column. Phonon occupation is assumed ther-
malized at room temperature. All lengths are in nanometers. In
parenthesis are results from direct DFT calculations on (6, 6) and
(11,11) SWNTs with diameter d = 0.8 and 1.49 nm, respec-
tively. The other values are obtained by folding the graphene
EPCs.

d=038 d =149 d=25
s 74 (78) 137 (141) 230
1% 1o 183 (189) 336 (331) 564
B 183 (215) 336 (362) 564
I 53 97 163

op
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These results are consistent with the observation that
high-bias saturation currents in SWNTSs on a substrate are
significantly higher than those in suspended SWNTs [28].
Indeed, the effective temperature of optical phonons in
suspended SWNTs is expected to be higher due to the
absence of a thermally conductive substrate for heat sink-
ing. Also, it was recently reported that electrons inelasti-
cally tunneling from a scanning tunneling electron micro-
scope tip into a SWNT induce a nonequilibrium occupation
of the radial breathing mode phonons [29]. In this case, the
tunneling electrons are mostly coupled with the radial
breathing mode, since the associated vibrations directly
modulate the tip-nanotube distance. On the contrary, in
high-field transport experiments, electrons excite mostly
optical phonons, which are the dominant scattering source.

The generation of hot optical phonons, during high-field
electron transport, can be directly detected by a Raman
scattering experiment combined with electron transport.
The occupation of a given phonon mode can be determined
from the ratio of the corresponding Stokes and anti-Stokes
peak intensities. A rise in this ratio would be direct evi-
dence and would allow one to quantify the hot phonon
generation.

Finally, our approach can be easily extended to calcu-
late scattering times and mobility in semiconducting
SWNTs. In this case, the scattering times depend on elec-
tron energy and chirality since the bands are hyperbolic
and the electron density of states is energy dependent. The
angles 6, 6', and 6", entering in Egs. (6) and (7), are not
equal to O or 77, as in metallic SWNTs, but depend on the
chirality and on the initial and final state momenta (k and
k + q). These angles can be computed by simple geomet-
rical considerations.

In conclusion, accurate DFT calculations of EPCs in
graphene, (6,6) and (11,11) SWNTSs, combined with a
simple zone-folding model and the experimental graphite
EPCs are used to interpret the saturation SWNTs [-V
curves of Refs. [4—6]. We show that the optical-phonon
occupation is greatly increased during high-bias electron
transport, with an effective temperature of thousands
Kelvin. Such a high temperature causes a strong reduction
of the ballistic scattering length. This suggests coupling the
optical-phonon mode with a heat sink in order to reduce
their effective temperature. This would increase the scat-
tering length up to the maximum value of Eq. (9), which
sets the ultimate limit of ballistic transport. Finally, the
phonon generation by electron scattering is analogous to
the photon generation by stimulated emission in semicon-
ducting lasers. This suggests that SWNTs, under high bias,
can act as a possible source of coherent phonons.
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IDRIS (Grant No. 051202). S.P. acknowledges funding
from Marie Curie IHP-HPMT-CT-2000-00209 and A.C. F.
from the Royal Society. Funding from EU project
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