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Effects of electron-electron interactions on the electronic Raman scattering
of graphite in high magnetic fields
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We report the observation of strongly temperature (7")-dependent spectral lines in electronic Raman-scattering
spectra of graphite in a high magnetic field up to 45 T applied along the ¢ axis. The magnetic field quantizes the
in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3
to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest
Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the
spectral line shape from (w — A)™!/2 to (w — A)**~ "2 at T = 0. At finite T, we predict a thermal broadening
factor that increases linearly with 7. Our model reproduces the observed T-dependent line shape, determining
the electron-electron interaction parameter « to be ~0.05 at 40 T.
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Electron-electron (e-e) interactions become progressively
more important as the system dimension is lowered.
One-dimensional (1d) systems, in particular, provide model
environments in which to explore interaction effects [1].
Interacting 1d electrons are expected to form an exotic
electronic state of matter, the Tomonaga-Luttinger liquid
(TLL) [2-5]. A strong magnetic field, B, can suppress the
kinetic energy of electrons, thus enhancing the effect of
interactions, as exemplified by the fractional quantum Hall
effect [6-8]. For a 3d material, an applied magnetic field
creates an effective 1d system along the field, ideal for a
systematic study of interaction effects in a highly controllable
fashion [9]. Particularly promising are 3d metals with small
electron and/or hole pockets near the Fermi energy, Ef,
such as bismuth [10—-14] and graphite [12,15-18], where the
magnetic quantum limit can be readily reached with B ~ 10 T.

Here we use Raman spectroscopy to study electronic
states and correlations in graphite in a strong B up to 45 T
applied along the ¢ axis. The B quantizes the electronic
motion in the ab plane while the motion along the c axis
remains free, thus reducing the effective dimension from
3 to 1. Instead of the main Raman features related to
phonons [19,20], in this work we focus on a series of
electronic Raman features assigned to electronic inter-Landau-
level (LL) transitions [21], whose B dependence can be
explained through the Slonczewski-Weiss-McClure (SWM)
model [22-24]. Each feature exhibits strongly temperature
(T)-dependent shape. Our calculations show that scattering
by thermally excited acoustic phonons [25-28] is too weak
to explain the observations. Electron-electron interactions, on
the other hand, are shown to be the cause for the observed
T dependence, through the “shake-up” process, known in the
problem of x-ray (or Fermi-edge) singularities [5]. Namely,
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optically created electron-hole (e-h) pairs interact with, or
shake up, the 1d Fermi sea in the lowest Landau subbands,
resulting in line-shape deviations from single-particle densities
of states (i.e., 1d Van Hove singularities). Based on the TLL
theory [1-5], we show that e-e interactions modify the Van
Hove singularity to the form (w — A)**~1/2 at 0 K, where w is
the photon frequency, A is the band-edge frequency, and « is a
dimensionless measure of the influence of e-e interactions. At
finite 7, we predict a thermal broadening factor, I'(T) o T
Our model reproduces the observed T-dependent line shape,
determining « to be 0.016, 0.026, and 0.048, at 20, 30, and
40 T, respectively.

Raman-scattering measurements were performed on natu-
ral graphite (NGS Naturgraphit GmbH) in a back-scattering
Faraday geometry in B up to 45 T, as described in Ref. [21].
The excitation beam from a 532-nm laser was focused to a
spot size <20 um with a power of ~13 mW. Most of the data
were collected with a spectral resolution of ~3.4 cm~!. For
high-B, low-T (<10 K) measurements of the sharpest peaks,
a spectral resolution of ~1.9 cm~! was employed. The T drift
over an integration time of up to 7 min, measured by a 7' sensor
installed below the sample, was <1 Kat 7 =7 K and <2 K
atT > 180 K.

Figure 1(a) shows Raman spectra taken at 10, 20, and 30 T
at7 K. The main band is the G peak at ~1580 cm~!, due to Ey
phonons [19,20]. In the presence of B, electronic Raman fea-
tures appear, coming from inter-LL transitions, labeled (1,1),
(2,2),..., etc., which we focus on in this work. Figure 1(b)
shows a series of spectra taken at various B at 7 K, exhibiting
electronic peaks that move with B. These peaks can be
attributed to the “symmetric” inter-LL excitations in the vicin-
ity of the K point [21,29]. The strongest, lowest-frequency
transition among these is (1,1), which is from the n = —1 level
in the valence band to the n = 1 level in the conduction band.
Similarly, we observe the (2,2), (3,3), and (4,4) transitions; see
also the zero-field in-plane dispersions and energy levels near
the K point in the inset to Fig. 1(a). The symmetric inter-LL
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FIG. 1. (Color online) (a) Raman spectra at 10, 20, and 30 T. The
feature at ~1580 cm™! is the G peak due to the E,, phonons. Inset:
schematic energy-level diagram showing the transitions responsible
for the electronic peaks. (b) Data taken at various B at T = 7 K,
showing peaks due to (1,1) through (4,4) interband transitions. (c)
Peak positions of the observed (1,1), (2,2), and (3,3) transitions as a
function of B, together with calculations based on the SWM model.

excitations are nonresonant Raman processes and were theo-
retically investigated for single-layer graphene (SLG) [30] and
bilayer graphene (BLG) [31]. The peak positions of the three
lowest-energy transitions are plotted against B in Fig. 1(c);
they agree well with our calculations [32] (solid and dashed
lines) based on the SWM model [21].

These inter-LL transitions have strong 7" dependence, as
shown in Fig. 2, where Raman spectra at various T are
plotted for (a) 20, (b) 30, and (c) 40 T. At the lowest T, the
peaks exhibit sharp and asymmetric line shapes, reminiscent
of a 1d Van Hove singularity, as expected from the effective
dimension reduction from 3 to 1 in a B. As T increases, there
is significant peak broadening and blueshift. The blueshift is
expected from the thermal expansion of the carbon-carbon
bonds, which changes the tight-binding parameters [28]. On
the other hand, the thermal broadening cannot be explained
within the tight-binding model. To quantify it, we first fit the
spectra within a single-particle model using the joint density of
states for interband transitions, obtained from the SWM model,
with T-dependent Lorentzian broadening [32]. Figure 2(d)
plots the extracted Lorentzian FWHM I' as a function of T
for 20 and 30 T. Apart from a small finite linewidth at T =0,
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FIG. 2. (Color online) Temperature-dependent electronic Raman
scattering of graphite at (a) 20 T, (b) 30 T, and (c) 40 T. (d)
Temperature dependence of the broadening factor I" of the (1,1) line
at 20 T (solid circles) and 30 T (open circles). The lines are fits to the
data.

'y~ 5 cm™!, possibly due to disorder, I' linearly depends
onT.

Within the single-particle picture, 7 only appears in the
Fermi-Dirac distribution function, but this is a negligible effect
since both the initial and final states of the Raman process are
far away from Ep, which resides in the n = 0 bands. For
example, for the (1,1) transition at 30 T, the electron and hole
bands are ~65 meV (or ~750 K) away from Eg. Thus, we
need to take into account the interactions of the photoexcited
e-h pairs with some low-energy modes that would significantly
change when 7' changes from 4 to 300 K. Specifically, since
the linear-7" broadening in Fig. 2(d) implies a Bose-Einstein
distribution at an energy scale much smaller than kg 7', we only
consider bosonic excitations whose characteristic energies
are <100 K. Hence, we consider two types of low-energy
modes: (i) particle-hole (p-h) excitations across Eg in the
n =0 bands [Fig. 3(a)] and (ii) acoustic phonons. We find that
interactions with (i) explain the observed T -linear broadening
while interaction with (ii) is too weak to explain it.

The magnetoelectronic Raman scattering matrix was previ-
ously calculated for SLG [30] and BLG [31] and can be readily
generalized to graphite in the presence of B:

R =AY Wilky k)W, (ky. ko), (1)
k

where A is the scattering amplitude, k, (k;) are electron

momenta in the ab plane (along the ¢ axis), \I/l creates an
electron in the n = 1, 2, 3, 4,... bands, and V_, creates a
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FIG. 3. (Color online) (a) The shake-up process. The (1,1)
electron-hole pairs shake up the 1d Fermi sea in the lowest-
energy Landau subbands, creating particle-hole pairs across Eg. (b)
Temperature dependence of the line shape for the (1,1) transition
at 20 T, together with fits (dashed lines) based on the model
shown in (a).

hole in the n =—1,—-2, —3, —4, ... bands. Both electrons and
holes are massive at the bottom of the bands at the K point, i.e.,
m, # 0 for all n’s, similar to BLG, but there is e-h asymmetry,
i.e., m; ;é m_j.

Figure 3(a) depicts the basic ingredients involved in the e-e
interaction process we consider here, together with dispersions
calculated via the SWM model for the n = 0 and +1 bands
at 20 T. The two lowest-energy bands (n = 0%) cross Eg, and
the carriers near Er have approximately linear dispersions. In
the (1,1) process, an e-h pair is created in the n = 41 bands,
which interact with, and are thereby dressed with, multiple
p-h excitations in the n = 0F bands near Eg. As T is raised,
the thermal smearing of the Fermi edge leads to stronger
interaction between the massive e-h pair and the massless p-h
pairs, and the peak broadens. This type of shake-up process
was theoretically studied in carbon nanotubes at 0 K [33,34]: a
1d Van Hove singularity, (w — A)~!/2, is predicted to become
(w — A)**~ 12 witha ~ 0.1 once the shake-up process is taken
into account.
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We describe the n = 0~ electrons as a TLL with the
Hamiltonian [1-4] given by

HE = v / dzlyio. e — vio.pn ], @

where vg is the Fermi velocity and I/I}Z(L) creates a particle
near the right (left) Fermi point. The n = 0" band can be
described by a similar Hamiltonian but with a different vg. By
approximating the energy dispersion near Ef as E « k,, we
can rewrite Eq. (2) via bosonization as

Hy = 5t [ del(ve) + 07, &)

where V¢ = —2m[pr + pLl, VO =2m[pr — pL], and pr
(pL) is the density operator for right-moving (left-moving)
electrons.

We assume that the photogenerated electrons (n = 1) and
holes (n = —1) interact with the n = 0~ conduction electrons
separately. For the n = 1 band, where electrons are massive,
we can treat the electrons through

5 1
H = /dzllllr[—%ﬁzz + A1i|‘1’11 4)

where A; is the band-edge frequency and \IllT (W) is the
creation (annihilation) operator for the n = 1 band. We also
assume that the interaction Hamiltonian only involves the
total charge density, thus neglecting any backscattering and
umklapp scattering:

H—V/d vy 1v¢2 5)
ml—2 Z 1¥1 o .

We write the effective Hamiltonian for the system as the sum
of Egs. (3)-(5): H = H§ + Hi + Hin.

The diagonalization of the Hamiltonian is a unitary trans-
formation UTHU and has been previously solved by many
authors [33-36]:

+

Ut =exp [—iV; f dy9<y>wi<y>w](y>]. ©)

Under this transformation, the original interacting system
can be mapped to a noninteracting one, and the massive-
electron operator acquires an additional string operator,
W (z) = exp[—iyT0(z)/m1¥,(z), where \IJIT creates a free
electron in the n = 1 band. The massive n = 1 electron
then gets dressed by the additional string operator, i.e., the
n =0~ conduction electrons adiabatically adjust to the massive
electrons. Similarly, we can obtain a dressed expression for the
massive hole.

The spectral function can be obtained by calculating the
imaginary part of the retarded Green’s function [5],

GR(z,1) = =0V | (2,)W1(z,0),¥[(0,00¥_,0,00]). (7)

At zero T, Eq. (7) can be evaluated directly in real space.
However, at finite T, one has to follow a different route. As
the Green’s function for the massive electron/hole and that for
the conduction electrons are both straightforward to obtain,
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the total Green’s function can be written as a convolution of
three Green’s functions,

GR(z,t) ~ —i0(t)[—iG=,(~z, — DI[iG (z,)]F(z,1),

dp; do,
G*0.0) = —1/1_[ i 5 G (@) F(pr.on)

x 80— pr — pz)5(w — w1 —w), ®)
dw
GO(p.w) = / o / SAGT (pron)
X G_l(pl — D, _(1)),
where
F(z,1) = (exp[—iy0(x,1)] exp[iy6(0,0)]). ©))
We can express the spectral function in a universal form as
T
A(w) = AT~ °5F<‘°/ ,a), (10)
4

where

F(z,t) = ZZB[n+ot,1 —a]Blm +a,1 —a]

n=0 m=0

N\ 20
x Re 2i) . (11)

\/z—%(m—i—n—}—a)

In Eq. (11) there are two dimensionless parameters: w/T
and «. The first parameter implies that the spectral width
linearly depends on 7 for a fixed «. The meaning of « can
be understood by studying the 7 = 0 asymptotic behavior
of Eq. (11), and comparing it with the previous zero-T
results [33,34]. It then becomes clear that

O(w— A)

A(a)) X m,

(12)
where © is the Heaviside function. For metallic carbon
nanotubes, o was estimated to be ~0.1 [33,34]. To fit our
experimental data with our model, we use the true band struc-
ture instead of a parabolic approximation, by fitting the tail up
to ~0.2(r/c) from the K point. Figure 3(b) shows how well
our model fits the data, determining «(20 T) =~ 0.016, «(30 T)
~ 0.026, and @(40 T) ~ 0.048. These values are smaller than
the value estimated for nanotubes, as expected, but there is a
trend that « increases with B, as this tends to make the system
more 1d.

We now consider acoustic phonons, which can also couple
to the massive electrons and holes. We use the approximation
that in-plane and out-of-plane modes are separated. This
approximation leads to a slight numerical modification of the
following equations but greatly simplifies our understanding
of electron-acoustic phonon interactions in graphite. The
properties of acoustic phonons can be described by five elastic
constants [37]: Ci; = 1109 GPa, Cg¢ = 485 GPa, C33 =
38.7 GPa, Ci3 = 0 GPa, and C44 = 5 GPa. Unlike the
case of optical phonons [19,26,38,39], coupling with acoustic
phonons vanishes at the I point since the electron-acoustic-
phonon interaction Hamiltonian He, ~ /g [25,40,41], where
q is the phonon wavenumber. We then evaluate the thermal
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broadening of Raman peaks by calculating the imaginary part
of the self-energy:

Hepy =Y gih(@)¥](ky + qy,k: + q)Wi(ky k)b - + by),

__ nkqsiné h QA_% 13)
817 T \2NMw; 2 Ty’

4 4 4

h(q) = (4 213q% sin* 0 + lhg* sin'0 ;m 9)6(1%‘12““29)/4,
where Iz = (h/eB)'/? is the magnetic length, n ~ 2, and k ~
1/3 [26]. To first order, we estimate the scattering rate through
Fermi’s “golden rule”:

= 7” S If I Ho D PS(E — Ep). (14)
f

‘When the momentum transfer during the scattering process
is small (i.e., vg < kgT), the phase space for phonon modes
is qz(ﬁ + % + %) ~gT — 0, and when the momentum
transfer is large, the overlap between initial and final states
has a factor exp(—¢q?/3). For B =30 T, [ ~ 5 nm, which is
at least one order larger than the carbon-carbon bond length.
Thus, the contribution to scattering drops exponentially as the
phonon modes move away from the I point (or, equivalently,
with increasing energy). The calculated momentum-dependent
scattering rate is then given by

T ~2 o 39 h2 ’9
W(kz)zA’/ 40 g~ sin (q.9)
0 cos?
sin2 0 + » 7 L cos2 0
NE (15)
X [0 A P )
log T3 %+3
where
dmlpV, v €OS0 :F\/sin20+ V2 /VEcos?o
) cos2 6 ’
Vinit A
A= T ﬂ“—‘—‘/_”AB ~ 4.1 % 1076

lor M I3 y2 Wi

This value leads to W(k;) ~ 107* cm™' at 30 T and 200 K,
too small to explain the observed broadening, which requires
the scattering rate to be ~10 cm™'. There are two reasons for
the small ZA’: one is m/M ~ 1073, and the other is Vunit/lé.
The latter, i.e., the magnetic length suppression, is a unique
aspect of this work, made possible by a high B.

In summary, we studied electronic Raman scattering in
graphite in a strong magnetic field up to 45 T, applied along
the ¢ axis. We observe a series of spectral lines, ascribed
to inter-Landau-subband transitions, and each line exhibits
strongly T-dependent line shape. We developed a microscopic
model based on the Tomonaga-Luttinger theory, with which
we show that the shake-up process can explain the observed
results. Specifically, electron-electron interactions modify the
Van Hove singularity to the form (o — A)**~!/2 at T = 0. Our
model accurately reproduces the observed T-dependent line
shape, determining « to be 0.016, 0.026, and 0.048, at 20, 30,
and 40 T, respectively.
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