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DERIVATION OF EQ. 1

The electronic Hamiltonian for the π,π∗ basis can be written as a 2× 2 matrix:

H(k,0) =


 ~vF k 0

0 −~vF k


 , (S-1)

where k is a small in plane wave-vector and K + k is the electronic momentum. Let us

consider a distortion of the lattice according to a Γ − E2g phonon pattern (note that the

Γ−E2g phonon is doubly degenerate). At the lowest order the π-bands Hamiltonian changes

as

H(k,u) = H(k,0) +
∂H(k,0)

∂u
u (S-2)

where u is the phonon normal coordinate (the two atoms in the unit-cell are displaced by

±u/
√

2 along a given direction in the plane). ∂H/(∂u) can be obtained from the ab-initio

deformation potential matrix elements. Following Ref. 1 (Eq.6 and note 24) and Ref. 2, for

the E2g phonon mode and for a small k

∣∣∣∣〈kπ∗|∂H

∂u
|kπ∗〉

∣∣∣∣
2

=

∣∣∣∣〈kπ|∂H

∂u
|kπ〉

∣∣∣∣
2

= 〈D2
Γ〉F [1 + cos(2θ)] (S-3)

∣∣∣∣〈kπ∗|∂H

∂u
|kπ〉

∣∣∣∣
2

= 〈D2
Γ〉F [1− cos(2θ)], (S-4)

where |kπ/π∗〉 are the electronic states with momentum K+k and θ is the angle between k

and the direction perpendicular to the atomic vibration. Taking the square root of Eqs. S-

3, S-4 and inserting them into Eq. S-2

H(k,u) =


 ~vF k 0

0 −~vF k


 +

√
2〈D2

Γ〉F


 cos(θ) sin(θ)

sin(θ) − cos(θ)


 u. (S-5)

The eigenvalues of Eq. S-5 are then

ε = ±~vF

√
k2 + s2 + 2ks cos(θ) = ±~vF |k− s(u)|, (S-6)

where s is defined in the main text.

1

© 2007 Nature Publishing Group 

 



DERIVATION OF EQ. 4

Considering the Taylor expansion of ∆E(u) in u, Eq. 4 is equivalent to:

d2

(du)2
∆E(u) =

d2

(du)2

{
4A

(2π)2

∫

ε(k,π∗,0)<εF

ε(k, π∗,u) d2k

}
. (S-7)

In this section, we will demonstrate that

~∆ω =
~

2Mω0

d2

(du)2

{
4A

(2π)2

∫

ε(k,π∗,0)<εF

ε(k, π∗,u) d2k

}
, (S-8)

at T = 0 and under the condition

εF À ~ω0/2. (S-9)

Using Eq. 2, Eq. 4 will then immediately follow.

Within time dependent perturbation theory, ~∆ω is (see Eq. 10 of Ref. 3):

~∆ω =
~

2Mω0

[F εF
0 (ω0)− F 0

0 (ω0)]. (S-10)

were at T = 0,

F εF
0 (ω0) =

2

Nk

∑

k,o,e

|Dko,ke|2
{

1

εko − εke + ~ω0

+
1

εko − εke − ~ω0

}
. (S-11)

Here the index o and e denotes the occupied (εko < εF ) and empty bands (εke > εF ), and

Dko,ke = 〈ko|∂H

∂u
|ke〉. (S-12)

Now we consider only the π and π∗ bands and we substitute 1/Nk

∑
k with A/(2π)2

∫
d2k,

where A is the unit-cell area and the integral is restricted on a circle of radius k̄, centered

on K. Assuming a Dirac dispersion for the π and π∗ bands, εke − εko ≥ 2εF . Thus, if the

condition of Eq. S-9 holds, |εke − εko| À ~ω0 and the ~ω0 in the denominators of Eq. S-11

can be neglected. Eq. S-11 becomes

F εF
0 =

8A

(2π)2

∫

ε(k,π∗,0)>εF ,k<k̄

|Dkπ∗,kπ|2
ε(k, π,0)− ε(k, π∗,0)

d2k, (S-13)

where ε(k, π/π∗,0) are the bands of the undistorted graphene structure. From Eq. S-10,

~∆ω =
~

2Mω0

{
− 8A

(2π)2

∫

ε(k,π∗,0)<εF

|Dkπ∗,kπ|2
ε(k, π,0)− ε(k, π∗,0)

d2k

}
. (S-14)
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From textbook static second order perturbation theory

1

2

d2ε(k, π∗,u)

(du)2

∣∣∣∣
u=0

=
|Dkπ∗,kπ|2

ε(k, π∗,0)− ε(k, π,0)
. (S-15)

Substituting Eq. S-15 in Eq. S-14 we have

~∆ω =
~

2Mω0

{
4A

(2π)2

∫

ε(k,π∗,0)<εF

d2ε(k, π∗,u)

(du)2
d2k

}
. (S-16)

Eq. S-8 is, finally, obtained by taking the derivation with respect to u in Eq. S-16 outside

the integral.
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