Supplementary Information

DERIVATION OF EQ. 1

The electronic Hamiltonian for the 7,7* basis can be written as a 2 x 2 matrix:

hvpk 0
Hko0)=|"" : (S-1)
0 —hUFk
where k is a small in plane wave-vector and K + k is the electronic momentum. Let us
consider a distortion of the lattice according to a I' — E5, phonon pattern (note that the

I' — E», phonon is doubly degenerate). At the lowest order the m-bands Hamiltonian changes

as
0H (k,0)
ou Y

where u is the phonon normal coordinate (the two atoms in the unit-cell are displaced by

H(k,u) = H(k,0) + (S-2)

+u/+/2 along a given direction in the plane). OH/(du) can be obtained from the ab-initio
deformation potential matrix elements. Following Ref. 1 (Eq.6 and note 24) and Ref. 2, for
the Ey, phonon mode and for a small k

2 2

‘(kﬂ*|%—[j|kﬂ*> = (D})p[1 4 cos(20)] (S-3)
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e k)| = (DR cos(20) (54

where |km/7*) are the electronic states with momentum K+k and 6 is the angle between k
and the direction perpendicular to the atomic vibration. Taking the square root of Eqs. S-
3, S-4 and inserting them into Eq. S-2

hvpk 0 cos() sin(0)

Hlkew) = 0 —hupk TR sin(f) — cos(0) “ (53)

The eigenvalues of Eq. S-5 are then

€ = +hvp\/k2? + 52 + 2ks cos() = £hvp|k — s(u)], (S-6)

where s is defined in the main text.
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DERIVATION OF EQ. 4

Considering the Taylor expansion of AE(u) in u, Eq. 4 is equivalent to:

d? 22 AA * 2
0 = a7 {1 L, 07 57

In this section, we will demonstrate that

h d? { 4A / }
hAw = e(k, 7, u) &’k ¢, S-8
2 [ L 202 oo gycen 0T (58)
at 17" = 0 and under the condition
€Ep > MO/Q (8—9)

Using Eq. 2, Eq. 4 will then immediately follow.
Within time dependent perturbation theory, hAw is (see Eq. 10 of Ref. 3):

h

hAw = Mo [F§F (wo) — Fg(wo))]. (S-10)
were at T' = 0,
FEF (wp) Z | Dico e ! + ! . (S-11)
Nkkoe €ko — €ke + Ty €xo — €ke — Py

Here the index o and e denotes the occupied (ex, < €r) and empty bands (ex. > €r), and
OH
Dyoxe = (ko|—|ke). S-12
koee = (ko| = —[ke) (5-12)

Now we consider only the 7 and 7* bands and we substitute 1/Ny >, with A/(27)? [ d*k,
where A is the unit-cell area and the integral is restricted on a circle of radius k, centered
on K. Assuming a Dirac dispersion for the 7 and 7* bands, €y, — €x, > 2¢p. Thus, if the
condition of Eq. S-9 holds, |exe — €xo| > fuwp and the hwy in the denominators of Eq. S-11
can be neglected. Eq. S-11 becomes

8A |Dk7’l'* kTI’|2 )
o' = ’ d’k S-13
0 (27[-)2 /e(k,ﬂ'*,O)>eF,k<l_c E(kv T, 0) - E(ka ﬂ-*a 0) ’ ( )

where e(k, 7/7*,0) are the bands of the undistorted graphene structure. From Eq. S-10,

h 8A |Dk7r* k7r|2 2
hAw = — d°k ;. -14
“ 2Mw0 { (27‘—)2 /(k 7*,0)<ep (k ™ 0) (k7 7T*7 0) (S )
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From textbook static second order perturbation theory

1 d2€(k, 7r*,u) _ ’Dkﬂ'*,kﬂ"2 . (8_15)
2 (du)? | ,_, ek, 7,0)—¢k,,0)
Substituting Eq. S-15 in Eq. S-14 we have
h 4A d*e(k, 7, 1) }
hAw = —/ —— 2 PPk S-16
1 BT S (10

Eq. S-8 is, finally, obtained by taking the derivation with respect to v in Eq. S-16 outside
the integral.
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