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Abstract. We review the optical phonon dispersions of graphene. In particular, we
focus on the presence of two Kohn anomalies in the highest optical phonon branch
at the Γ and K points of the Brillouin zone. We then show how graphene can be
used as a model for the calculation of phonons in carbon nanotubes. Finally, we
present the beyond Born-Oppenheimer corrections to their phonon dispersions.
These are experimentally revealed in the Raman spectra of doped samples.

1 Introduction

Graphene is a bi-dimensional crystal of carbon atoms arranged into a honeycomb lattice. Even
before its recent discovery in the free state [1,2], graphene was widely employed as a toy model
for the description of the electronic and vibrational properties of other form of sp2 bonded
carbons, like graphite and carbon nanotubes [3–5].
Here we review the vibrational properties of graphene, showing how its phonon dispersion

is shaped by the effects of electron–phonon interaction, which results in the presence of two
Kohn anomalies in the highest optical branch.
We then show how graphene can be used to accurately compute the phonon frequencies

of single wall carbon nanotubes (SWNTs). In particular, we emphasize the description of the
Kohn anomalies in the phonon dispersion of metallic SWNTs, underlying how their correct
description can be achieved only by considering the time-dependent nature of phonons. Finally
we discuss the Raman signatures of adiabatic and non-adiabatic Kohn anomalies in the Raman
spectra of graphene and metallic nanotubes.

2 Optical phonons of graphene

Figure 1 presents the high frequency region of the phonon dispersion of graphene, as obtained
by density functional theory calculations in [6]. Calculations are performed within the gen-
eralized gradient approximation (GGA) [7], using the density functional perturbation theory
(DFPT) scheme [8], which allows the exact (within DFT) computation of phonon frequencies
at any Brillouin Zone (BZ) point. We use plane-waves (90Ry cut-off) and pseudopotential [9]
approaches. We treat the semi-metallic character of the system by performing the electronic
integration with a smearing technique [10], i.e. occupying the electronic levels according to a
distribution with a finite fictitious electronic temperature σ. This smears out the discontinu-
ities present in the Fermi distribution for σ=0. Calculations are performed at the experimental
lattice spacing (a0 = 2.46 Å). Graphene layers are separated by 7.4 Å of vacuum.
The most striking feature of the dispersion in figure 1 is the discontinuity in the frequency

derivative of the highest optical branches (HOB) at Γ and at K (E2g and A
′
1 modes). This
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Fig. 1. Phonon dispersion of graphene calculated by DFPT. The red lines are guide for the eye,
emphasizing the presence of the two Kohn anomalies at Γ and K.

discontinuity, emphasized by the red lines in figure 1, is strongly related to the metallic nature
of graphene. Indeed, the two cusps can be observed only if the calculations are strictly con-
verged with respect to the electronic smearing. Within DFPT, the smearing σ affects virtual
transitions between occupied and empty states, differing in energy by ∼ σ. This proves that the
discontinuity are related to an anomalous screening of the electrons around the Fermi energy,
and are thus Kohn anomalies [11].

In general, atomic vibrations are partially screened by electronic states. In a metal this
screening can change rapidly for vibrations associated to certain q points, entirely determined
by the shape of the Fermi surface. The consequent anomalous behavior of the phonon dispersion
is called Kohn anomaly [11]. Kohn anomalies may occur only for wavevectors q such that there
are two electronic states k1 and k2 = k1 + q both on the Fermi surface [11]. In graphene, the
gap between occupied and empty electronic states is zero at K and K′. Since K′ = 2K, these
are connected by the vector K. Thus, Kohn anomalies can occur for q = Γ or q = K, as shown
in figure 1.

The q = Γ or q = K cusps cannot be described by a finite set of interatomic force constants
or by a set decaying exponentially with the real-space distance. Indeed, if they decayed expo-
nentially, the dependence of the dynamical matrix on the reciprocal space vectors would be
analytic, and, because of symmetry, the highest optical branch near Γ and K would have a flat
slope. Thus, the two discontinuities indicate a non-analytic behavior of the phonon dispersion,
due to a polynomial decay of the force constants in real space. This explains why it is impossible
for any of the often used few-nearest-neighbors force constants approaches to properly describe
the HOB phonons near K and Γ [6].

Interestingly for a given value of q, the Kohn anomalies are present only in the highest
optical branches. This can be understood by noting that the non-analyticities of the dynamical
matrix are due to terms proportional to the electron–phonon coupling. Thus, only phonons
with a non-zero electron–phonon coupling matrix element (EPC) for transitions close to the
Fermi energy can be affected by the Kohn anomalies. An explicit calculation of the EPC for
the modes of graphene at Γ and K clearly shows that this condition is satisfied by the highest
optical branches only [6,12,13,15].

Starting from the adiabatic expression of the dynamical matrix, and describing the electron–
phonon coupling with a first neighbor tight binding model, it is possible to derive an entirely ana-
lytical description of the Kohn anomalies in graphene [6]. Defining 〈D2Γ〉F =

∑π
i,j |DKi,Kj |2/4,

where the sum is on the two degenerate π bands at the Fermi level εF and D(k+q)i,kj =
〈k + q, i|∆Vq|k, j〉 is the electron–phonon coupling (EPC) matrix element, with |k, i〉 the elec-
tronic Bloch eigenstate of wavevector k, band i, energy εk,i, and occupation fk,i given by the
Fermi–Dirac distribution function; ∆Vq is the derivative of the electronic potential with respect
to a displacement along the phonon normal coordinate. In particular, we have shown that the
slope of the phonon dispersion at Γ and K is proportional to the square of the electron–phonon
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coupling and inversely proportional to the Fermi velocity [6,12,13,15]:

SLOΓ =

√
3h̄a20

8MωΓβ
〈D2Γ〉F , (1)

and

STOK =

√
3h̄a20

8MωKβ
〈D2k〉F , (2)

where β = h̄vF = 5.52 Å eV is the slope of the electron bands near εF , vF is the Fermi velocity,
M is the carbon atomic mass, ωΓ is the frequency of the E2g phonon (h̄ωΓ = 196.0meV),
ωK is the frequency of the K-A

′
1 phonon.

The experimental phonon dispersions can then be used to measure the EPC matrix elements.
In particular, our calculated DFT values are experimentally confirmed. E.g., let’s consider the
EPC relative to the E2g phonon at Γ. The Γ-E2g mode is doubly degenerate and consists of
an antiphase in-plane motion. For a small non zero q near Γ, this splits into a quasi longitu-
dinal (LO) and quasi transverse (TO) branch, corresponding to an atomic motion parallel and
perpendicular to q. From DFT calculations we get 〈D2Γ〉F = 45.60 (eVÅ−1)2 for both LO and
TO modes [6]. The shape of the phonon branches around Γ, which are the best determined
experimentally, is well reproduced by our calculations [6,12,13]. From a quadratic fit to the
most recent data of [15] we get SLOΓ = 133 cm−1 Å. From equation (1) we have 〈D2Γ〉F =
39 (eVÅ−1)2, in good agreement with DFT.

3 Optical phonons in nanotubes

3.1 Adiabatic Kohn anomalies

Graphene can be used as a model for the calculation of the electronic and vibrational properties
of carbon nanotubes. A SWNT can be thought as rolled up graphene [3,4]. The chirality of a
SWNT is determined by the length and orientation of the vector identifying its diameter on a
graphene sheet [3,4]. Depending on its chirality, a SWNT can be either metallic or semicon-
ducting. The differences between graphene and SWNTs can be explained in terms of curvature
and confinement [13]. Curvature effects arise because in a non planar geometry the C-C bonds
assume a mixed σ−π character. Confinement effects arise because the electronic wave-functions
in a SWNT have to be commensurate to the tube circumference, resulting in the quantization
of the electronic momentum component perpendicular to the tube axis.
Neglecting the effects of curvature, it is thus possible to map the electronic states of SWNT

onto those of graphene. It has been shown that folding the electronic structure of graphene
to describe the band structure of SWNTs produces accurate results for tubes larger than
0.8 nm [16]. This technique is known as electronic zone folding (EZF). In the past, a simi-
lar technique had also been applied to phonons. This goes under the name of phonon zone
folding (PZF). However, as discussed in section 2, the phonon dispersions of graphene are
affected by two Kohn anomalies, which occur only in metals. Thus, Kohn anomalies cannot be
present in semiconducting SWNTs, while they will be enhanced in metallic SWNTs because
of their reduced dimensionality [12,13]. As a consequence, PZF is not suitable for the descrip-
tion of the phonon dispersion of SWNTs close to the Kohn anomalies. However, neglecting
the effects of confinement, the phonons of SWNTs can be obtained from the phonons of a flat
graphene sheet, if the calculation is done performing the electronic Brillouin-zone integration
on the lines of the electronic zone-folding [12,13]. This approach allows the description of all
the effects of confinement, and can be used to compute the phonon dispersions of tubes with a
diameter larger than 0.8 nm, i.e. those typically used in experiments.

3.2 Non-adiabatic Kohn anomalies

Things change if non-adiabatic effects are taken in account [13,17,18]. Indeed, the techniques
used for the computation of phonons in graphene and carbon nanotubes (DFPT, frozen
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Fig. 2. Shape of the phonon dispersion of the modes derived from graphene E2g for a (11,11) SWNT.
Blue dots are the result of static EZF calculations. The red dotted line and the blue continuous line
are obtained with an analytic model based respectively on the adiabatic and non-adiabatic description
of phonons.

phonons) are based on the adiabatic Born-Oppenheimer approximation [19]. Thus, the motion
of the electrons is assumed to be entirely decoupled from the motion of the ions, and phonons
can be described as time independent perturbations. This approach, which for tri-dimensional
metals produces excellent results [20], fails in the description of the vibrational properties of
SWNTs, because of their reduced dimensionality.
Within a time-dependent approach, the reciprocal-space expression for the non-analytic part

of the dynamical matrix of SWNTs, Θq is given by [13,21]:

Θ̃q =
2τAΓ/K

2π

∫ k̄
−k̄
|D(K+k′+q)π∗,(K+k′)π|2 fK+k,π − fK+k′+q,π∗

εK+k′,π − εK+k′+q,π∗ + h̄ωq + iγ dk
′, (3)

where τ is the length of the translational unit of the tube, k′ is measured from the Fermi point
kF ; k̄ has a small but finite value; AΓ/K accounts for the number of processes satisfying 2q = kF
(AΓ = 2, AK = 1), h̄ωq is the energy of a phonon of wavevector q and branch η (omitted in
the equations for simplicity), γ is a small real number. Within the adiabatic approximation,
the phonon is described in its static limit, which corresponds to assuming ωq = 0 and γ = 0.

The expression for of Θ̃q thus simplifies as:

Θ̃q =
2AΓ/Kτ

2π

∫ k̄
−k̄

fK+k′,π − fK+k′+q,π∗
εK+k′,π − εK+k+q,π∗ − iγ |D(K+k′+q)π∗,(K+k′)π|

2 · dk′. (4)

Kohn Anomalies occur for phonons (i) having non-zero EPC between states close to the Fermi
energy, and (ii) for which the denominator in equations (3), (4) vanish, resulting in the presence
of a singularity in the dynamical matrix [6]. Thus, within a static approach, the anomalies are
predicted to occur for the values of q that make the denominator in equation (4) vanish, i.e.
for q = 0 and q = 2kF [6,12,22,23].
The non-adiabatic approach leads to a deep modification in the description of the Kohn

anomalies. Because of the presence of the h̄ωq + iγ terms, and assuming the electronic bands
of the SWNTs at the Fermi energy to be linear with slope β, the denominator of equation (3)
vanishes for q = ±h̄ωq/β and q = kF ± h̄ωq/β, resulting in a shift of the position of the KAs.
Using the folding approach described in [12,13], it is easy to numerically integrate

equations (3), (4), and obtain the theoretical description of the KAs in metallic SWNTs within
the adiabatic (static) and non-adiabatic (dynamic) approaches. These results should then be
corrected for the curvature effects, as described in [13].
Figure 2 compares the the modes derived from the graphene E2g in a (11,11) metallic

SWNTs, calculated using a static and a dynamic description of the phonons. In the first
case only the LO mode is affected by a Kohn anomaly, centered at q = Γ. On the other
hand, calculations performed with the dynamic, time-dependent approach show the presence of
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Fig. 3. Electron bands around K in graphene (a) and in a metallic tube (b). Shaded area is the
graphene Brillouin zone. Dashed arrows: decay processes for a Γ phonon.

the anomalies for both the LO and the TO modes, and predict the anomalies to be shifted
from Γ [13].

4 Phonon linewidths in graphene and nanotubes

In a perfect crystal, the linewidth γ of a phonon is determined by its interaction with other
elementary excitations. Usually, γ = γan+ γEP , where γan is due to the interaction with other
phonons and γEP to the interaction with electron-hole pairs. γan is determined by anharmonic
terms in the interatomic potential and is always present. γEP is determined by the EPC,
and is present only in systems where the electron gap is zero. If the anharmonic contribution
γan is negligible or otherwise known, measuring the linewidth is a simple way to determine
the EPC. This is the Case in graphene, graphite and nanotubes, where γan is much smaller
than γEP [12].
The EPC contribution to γqη is given by the Fermi golden rule [24]:

γEPqη =
4π

Nk

∑
k,i,j

|g(k+q)j,ki|2
[
fki − f(k+q)j

]
δ
[
εki − ε(k+q)j + h̄ωqη

]
, (5)

where δ is the Dirac distribution, g(k+q)j,ki = D(k+q)j,ki
√
h̄/(2Mωqη).

The electron states contributing to the sum in equation (5) are selected by the energy
conservation condition εki+ h̄ωqη = ε(k+q)j . Also, the state ki has to be occupied and (k+q)j
empty, so that the term [fki−f(k+q)j ] �= 0. Thus, only electrons in the vicinity of the Fermi level
contribute to γEP . In insulating and semiconducting systems γEP = 0. In general, a precise
estimate of γEP from equation (5) is possible only after an accurate determination of the Fermi
surface. However, graphene and SWNTs are very fortunate cases. Thanks to their particular
band structure, γEP is given by a simple analytic formula.
The G peak of graphene is due to the Γ-E2g phonon [26,25]. We use equation (5) to compute

the width, γEPΓ , for this mode. Close to K, we assume the π bands dispersion to be conic from
the Fermi level εF, with slope β (figure 3(a)) For both LO and TO modes:

γEPΓ =

√
3a20h̄

2

4Mβ2
〈D2Γ〉F . (6)

According to equation (6), the EPC 〈D2Γ〉F can be directly obtained by measuring the phonon
linewidth γEPΓ . Finally, near Γ the conservation of the energy and momentum in equation (5),
implies:

γEPq = 0 ⇔ q ≥ h̄ωΓ/β. (7)



164 The European Physical Journal Special Topics

Fig. 4. Raman spectra of Graphene and
Graphite measured at 514 nm excitation.

This condition is satisfied by the E2g phonon, involved in the Raman G peak of graphene.
Extending to finite T and εF �= 0 we get [17,18]:

γ =
π2ωΓα

′

c

[
f

(
− h̄ωΓ
2
− εF

)
− f

(
h̄ωΓ

2
− εF

)]
, (8)

where c is the speed of light and α′ = 2A0〈D2Γ〉h̄/(2πMωΓβ2). γ drops to zero for εF > h̄ωΓ/2
because the scattering process is forbidden by the Pauli exclusion principle.
Equation (5) can also be used to derive the EPC contribution in metallic SWNTs. The

EPC of a SWNT can be obtained from the graphite EPC 〈D2Γ〉F via zone-folding (valid for
d ≥ 0.8 nm) [12]. Four scattering processes are involved (figure 3(b)) and for a given tubes
diameter d the LO and TO linewidths are:

γEPΓ−LO =
2
√
3h̄a20

πMωΓβ

〈D2Γ〉F
d
; γEPΓ−TO = 0. (9)

Equation (9) is a key result. It shows that the EPC contributes to the linewidth only for the
LO mode in metallic SWNTs. For semiconducting SWNTs the EPC contribution is zero for
both the TO and LO modes, since the gap does not allow to satisfy the energy conservation in
equation (5). Equation (9) can be extended to finite T in a similar way to equation (8).

5 Phonons and Raman spectra of graphene and doped graphene

5.1 Pristine graphene and graphene layers

Figure 4 compares the 514 nm Raman spectra of graphene and bulk graphite [25]. The two most
intense features are the G peak at ∼1580 cm−1 and a band at ∼2700 cm−1, historically named
G’, since it is the second most prominent band always observed in graphite samples [25]. The
G peak is due to the doubly degenerate zone centre E2g mode [28]. On the contrary, the G’
band has nothing to do with the G peak, but is the second order of zone boundary phonons.
Since zone-boundary phonons do not satisfy the Raman fundamental selection rule, they are
not seen in the first order Raman spectra of defect-free graphite [27]. Such phonons give rise
to a Raman peak at ∼1350 cm−1 in defected graphite, called D peak [25]. Thus, for clarity, we
refer to the G’ peak as 2D. The 2D peak in bulk graphite consists of two components 2D1 and
2D2 [28,27], roughly 1/4 and 1/2 the height of the G peak, respectively. Graphene has a single,
sharp 2D peak.
Figure 5 plots the evolution of the 2D band as a function of the number of layers for 514.5 nm

excitation [25]. Bi-layer graphene has a much broader and up-shifted 2D band with respect to
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Fig. 5. Left: Raman spectra of Graphene as a function of number of layers. Right: DR for the 2D peak
in (A) graphene and (B) bi-layer graphene.

graphene. This band is also quite different from bulk graphite. It has 4 components, 2D1B, 2D1A,
2D2A, 2D2B, 2 of which, 2D1A and 2D2A, have higher relative intensities than the other 2. A
further increase of the number of layers leads to a significant decrease of the relative intensity
of the lower frequency 2D1 peaks. For more than 5 layers the Raman spectrum becomes hardly
distinguishable from that of bulk graphite [26]. On the other hand the shape of the G peak
does not change with the number of layers. However, a slight upshift can be seen in the case of
graphene. This is due to a combination of self-doping [17], as discussed later, and to the fact
that the frequency of the Raman active phonon in graphene is slightly higher than in graphite,
due to the mode splitting (see lower panel figure 1, [6]).
The 2D peak in graphene is due to two phonons with opposite momentum in the highest

optical branch near K [6,25,29]. This peak changes in position with varying excitation energy.
This is due to a Double Resonance (DR) process, which links the phonon wave-vectors to the
electronic band structure [30].
Within DR, Raman scattering is a fourth order process involving four virtual transitions:

i) a laser induced excitation of an electron/hole pair (a→ b vertical transition in figure 5(a));
ii) electron–phonon scattering with an exchanged momentum q close toK (b→ c); iii) electron–
phonon scattering with an exchanged momentum −q (c→ b); iv) electron/hole recombination
(b → a). The DR condition is reached when the energy is conserved in these transitions.
The resulting 2D Raman frequency is twice the frequency of the scattering phonon, with q
determined by the DR condition [26]. The other two possible DR phonons, with q < K and
q ∼ K, give a much smaller contribution to the Raman intensity. In fact, the q < K phonon
involves a smaller portion of the phase-space because of the band-structure trigonal warping
(see figure 4 of [31] and related discussion) and the q ∼ K phonon has a zero electron–phonon
coupling for this transition [6]. In the bi-layer, the interaction of the graphene planes causes
the π and π∗ bands to divide in four bands, with a different splitting for electrons and holes,
figure 5(b). Amongst the 4 possible optical transitions, the incident light couples more strongly
the two transitions shown in figure 5(b). The two almost degenerate phonons in the highest
optical branch couple all electron bands amongst them. The resulting four processes involve
phonons with momenta q1B, q1A, q2A, and q2B, as shown in figure 5(b). These wave-vectors
correspond to phonons with different frequencies, due to the strong phonon dispersion aroundK
induced by the electron–phonon coupling [6]. They produce four different peaks in the Raman
spectrum of bi-layer graphene [26].
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5.2 Doped graphene

By doping graphene, the change in the Fermi surface moves the Kohn anomaly away from
q = 0. Thus, since Raman probes q = 0 phonons, intuitively we expect a stiffening of the q = 0
G peak.
Figure 6 reports the G peak position and FWHM measured at 200K as a function of

electron dopoing. The G peak upshifts and sharpens with doping [17]. The trends in figure 6
are qualitatively similar to those reported by [32] at 10K.
The E2g phonon in graphene consists of an in-plane displacement of the carbon atoms

by a vector ±u/√2. In presence of such atomic displacements, the bands are still described
by a cone (i.e. a gap does not open) with the Dirac-point shifted from K by a vector s [17,
33]. In practice, the atomic-pattern of the E2g vibrations is mirrored into an identical pattern
of Dirac-point vibrations in the reciprocal space. The dependence of the electronic-bands on u
is [17]:

ε(k, π∗/π,u) = ±h̄vF |k− s(u)|, (10)

where s · u = 0, s = u√2〈D2Γ〉F /(h̄vF ).
The knowledge of the electronic-bands (in the presence of a phonon) allows the determina-

tion of the phonon energy h̄ωεF as a function of εF . In particular,

h̄∆ω = h̄ωεF − h̄ω0 =
h̄

2Mω0

d2∆E

(du)2
, (11)

where M is the carbon mass, ω0 is the frequency in the undoped case, ∆ω 	 ω0 and ∆E is the
variation of the electronic energy with εF .
Within the adiabatic Born–Oppenheimer approximation, ∆E(u) is computed assuming a

static atomic displacement. Under this hypothesis, for any given displacement u, the electrons
are supposed to be in the ground state, i.e. the bands are filled up to εF . Thus, the adiabatic
∆E is:

∆E(u) =
4A

(2π2)

∫
ε(k,π∗,u)<εF

ε(k, π∗,u) d2k, (12)

where we consider εF > 0, A = 5.24 Å
2 is the unit-cell area, a factor 4 accounts for spin and

K-point degeneracy. Combining equations (10) and (12), we have that ∆E does not depend
on u and h̄∆ω = 0. Thus, within the adiabatic approximation, the Raman G peak position is
independent of εF , in contrast with experiments, figure 6.
The experimental results are explained considering non-adiabatic contributions to the

dynamical matrix, as for equation (3) [18,34,35]. At T = 0 the G peak shift can be described
analytically [18]:

h̄∆ω =
h̄A〈D2Γ〉F
πMω0(h̄vF )2

[
|εF |+ h̄ω0

4
ln

(∣∣∣∣∣ |εF | −
h̄ω0
2

|εF |+ h̄ω02

∣∣∣∣∣
)]
. (13)

The result of equation (13) can be extended to any εF and finite temperature T by computing
the real part of the phonon self energy with the DFT electron–phonon coupling matrix-elements
to obtain [17,18]:

h̄∆ω = α′P

∞∫
−∞

[f(ε− εF )− f(ε)]ε2sgn(ε)
ε2 − (h̄ω0)2/4 dε, (14)

where P is the principal part [18,34,35]. Figure 6 shows the excellent agreement of the non-
adiabatic finite T calculation (equation (14)) with the experiments.
By comparing the adiabatic and non-adiabatic calculations, we conclude that the stiffening

of the E2g mode with |εF | is due to the departure of the electron population from the adiabatic
ground state [17].
This is further confirmed by the analysis of the G peak linewidth. From equations (6), (8). At

T = 0, γan = 11 cm−1 for εF = 0 and γan drops to zero for εF > h̄ω0/2 because the scattering
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Fig. 6. (A) G peak position as a function of electron concentration at 200K. (dots) measurements;
(horizontal-dashed line) adiabatic Born-Oppenheimer; (line) finite-temperature non-adiabatic calcula-
tion from equation (14). The minimum observed in the calculations at ∼1012 cm−2 occurs when the
Fermi Energy equals half of the phonon energy. (B) FWHM(G) at 200K as a function of electron
concentration (dots) measured; (line) theoretical FWHM of a Voigt profile obtained from a Lorentzian
component given by equation (8), and a constant Gaussian component of ∼8 cm−1 [17].

process is forbidden by the Pauli exclusion principle [12]. Figure 6(b) shows a good agreement
between the experimental and theoretical FWHM(G), once a constant inhomogeneous Gaussian
broadening of ∼8 cm−1 is added to the electron–phonon contribution of equation (8) [17].
Interestingly, in SWNT, due to the reduced dimensionality, even for the undoped case the

non-adiabatic contributions are essential to describe the phonons [13]. More so in the case of
doped SWNT [36].

6 Phonons and Raman spectra of SWNTs

In SWNTs, the double degenerate Raman active E2g mode of graphene splits into two distinct
phonons. As shown in figure 7, such modes are polarized respectively along the tube axis (lon-
gitudnal mode) and along the tube circumference (tangential mode), and are usually referred
to as the LO and the TO modes [13].
In the 1550–1590 cm−1 region, the Raman spectra of SWNTs are characterized by the

presence of two distinct features: the so called G+ and G− peaks. These peaks are due to the
LO and TO modes, and their shape and position strongly depend on the electronic properties
of the tubes. The G band of a metallic and of a semiconducting SWNT [37] are compared in
figure 7. In semiconducting tubes, both the G+ and the G− peaks appear as sharp Lorentzians,
centered respectively at ∼1590 cm−1 and 1570 cm−1. The G+ peak is usually more intense
than the G−, and its position is substantially independent of the tube’s diameter, whereas the
position of the G− peak decreases for decreasing tubes diameter. On the other hand, in metallic
tubes, the G− peak is usually rather intense, very broad, and sensibly downshifted with respect
to its counterpart in semiconducting tubes.
In semiconducting tubes, the splitting between the LO and the TO mode is usually explained

in terms of curvature. Indeed, the σ−π mixing of the C-C bonds along the circumference results
in a softening of the the TO mode with respect to the LO, accounting for both the peaks splitting
and the diameter dependence of the G− position.
For metallic tubes, different theories have been proposed. The first attempt to explain the

broadened, downshifted G− in metallic SWNTs was based on a Fano resonance between the TO
phonon and the plasmons in metallic tubes [38,39]. However, this model is in poor agreement
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Fig. 7. Right : Raman G-band of semiconducting and metallic SWNTs. Semiconducting tubes are
characterized by two sharp peaks. Metallic tubes show a characteristic broad, downshifted G− peak
(adapted from [37]). Left: LO and TO phonon modes of SWNTs derived from the E2g phonon of
graphene.

Fig. 8. Comparison between the computed frequency of the LO and the TO phonon in SWNTs and
the position of the G+ and the G− Raman peak in metallic and semiconducting tubes. Calculations
include the dynamic effects and a correction for the curvature effects [13].

with the experimental results, and neglects both the presence of Kohn anomalies in the phonon
dispersion of metallic SWNTs, and the role of the electron–phonon interaction. Indeed, it is
possible to prove by means of the EZF calculations described in section 3, that the G− peak
of metallic SWNTs is strongly shaped by the effects of the electron–phonon coupling [12,13].
Modeling the EPC in metallic SWNTs by using the same tight binding model used for graphene,
it is possible to show that the EPC affects the LO mode only. The EPC acts on the LO mode
in two different ways. First, it is responsible for the onset of a Kohn anomaly resulting in a
strong downshift of the LO frequency. Second, in agreement with the Fermi golden rule, it
reduces the LO phonon lifetime, resulting in an increase of the phonon linewidth. Thus, in
metallic tubes the G− peak is not originating from a curvature-downshifted TO phonon, like
in semiconducting tubes, but derives from an EPC-affected LO mode [12,13].

The prediction given by the dynamic, time-dependent, model can be compared with the
data from Raman spectroscopy. Figure 8 shows that the computed frequencies of the TO and
LO modes in metallic SWNTs are in excellent agreement with the position of the G+ and G−
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Raman peaks. Thus we assign the G+ and G− peaks of metallic nanotubes to TO (tangential)
and LO (axial) modes, the opposite of semiconducting nanotubes [12,13].
The non-adiabatic Kohn anomaly at Γ also explains the observed electronic temperature

dependence of the Raman spectra [13].

7 Conclusions

We reviewed the phonon dispersions of graphene, showing the presence of two Kohn anomalies
induced by the strong electron–phonon coupling of the E2g mode at Γ and the A

′
1 mode at K.

The Kohn anomalies in metallic SWNTs have to be described by using an approach accounting
for the time-dependent nature of phonons, usually neglected in the common Born-Oppenheimer
framework. The same applies in the case of doped graphene.

S.P. acknowledges funding from Pembroke College Cambridge. A.C.F from The Royal Society and The
Leverhulme Trust.
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