
Supplementary Note 1 Continuum-model Hamiltonian and cur-
rent matrix elements for 1L-MoS2

For 1L-MoS2 we use the low-energy k · p continuum-model Hamiltonian de-
scribed in Ref.[1]. Around the K and K′ points the model Hamiltonian con-
tains isotropic Hi and trigonal warping Htw contributions, i.e. H = Hi +Htw,
with:

Hi(k, τ, s) =
λ0τs

2
+

∆ + λτs

2
σz + t0a0k · στ +

~2|k|2
4m0

(α + βσz) , (1)

and

Htw(k, τ, s) = t1a
2
0(k · σ∗τ )σx(k · σ∗τ ) + t2a

3
0τ(k3

x − 3kxk
2
y)(α

′ + β′σz) . (2)

Here, s = ± is a spin index, τ = ± is a valley index, and στ = (τσx, σy),
with σx and σy ordinary 2 × 2 Pauli matrices operating on a suitable con-
duction/valence band basis[1]. We note that the terms in the Hamilto-
nian that contain the parameters ∆, β, β′ and λ0 are related to broken
spatial inversion symmetry in 1L-MoS2. The trigonal warping term con-
tains three parameters, α′,β′, and t1. The contribution to the band disper-
sion due to trigonal warping has the characteristic form z± cos (3φ), where
z± = t2(α′ ± β′) ± 4t0t1/ [2∆− (λ0 − λ)τs], and z+ (z−) stands for conduc-
tion (valence) band[2]. According to ab-initio calculations[3, 4], symmetry
considerations[4, 5], and experimental evidence[6], the valence band of 1L-
MoS2 is strongly warped, while the conduction band is nearly isotropic.

The Hamiltonian H can be diagonalized. Eigenvalues εc(v)
k,τ,s and eigenvec-

tors |uc(v)
k,τ,s〉 are:

ε
c(v)
k,τ,s = h0(k, τ, s)±

√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2 (3)

and

|uc(v)
k,τ,s〉 =

1√
[Dc(v)(k, τ, s)]

2
+ |h12(k, τ, s)|2

[
−h12(k, τ, s)
Dc(v)(k, τ, s)

]
, (4)

where
h0(k, τ, s) =

λ0

2
τs+

~2k2

4m0

α + t2a
3
0τ(k3

x − 3kxk
2
y)α

′ , (5)

hz(k, τ, s) =
∆ + λτs

2
+

~2k2

4m0

β + t2a
3
0τ(k3

x − 3kxk
2
y)β

′ , (6)

h12(k, τ, s) = t0a0(τkx − iky) + t1a
2
0(τkx + iky)

2 , (7)
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and
Dc(v)(k, τ, s) = hz(k, τ, s)∓

√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2 . (8)

We need the matrix elements of the current operator for the evaluation
of the nonlinear response functions. We start by introducing the so-called
paramagnetic current operator[7] (c = 1, where c is the speed of light, −e < 0
is the electron charge):

j`(k) ≡ − δH(k + eA/~)

δA`

∣∣∣∣
A=0

= − e
~
∂H
∂k`

, (9)

where ` = x, y is a Cartesian index. The diamagnetic contributions to the
current operator can be written as follows:

κ`1`2(k) ≡ − δ2H(k + eA/~)

δA`1δA`2

∣∣∣∣
A=0

= −
( e
~

)2 ∂2H
∂k`1∂k`2

(10)

and
ξ`1`2`3(k) ≡ − δ3H(k + eA/~)

δA`1δA`2δA`3

∣∣∣∣
A=0

= −
( e
~

)3 ∂3H
∂k`1∂k`2∂k`3

(11)

Using the continuum-model Hamiltonian introduced in Supplementary Equa-
tions (1) and (2), we find:

j` = − e
~

{
∂h0

∂k`
+
∂hz
∂k`

σz + Re[
∂h12

∂k`
]σx − Im[

∂h12

∂k`
]σy

}
(12)

and

κ`` = −
( e
~

)2
{
∂2h0

∂k2
`

+
∂2hz
∂k2

`

σz + Re[
∂2h12

∂k2
`

]σx − Im[
∂2h12

∂k2
`

]σy

}
. (13)

Similarly, one can derive an explicit expression for ξ```.
The required matrix elements of j` and κ`` between the eigenspinors given

in Supplementary Equation (4) read:

jcv
` (k, τ, s) ≡ 〈uc

k,τ,s|j`|uv
k,τ,s〉

=
e

~

{
hz(k, τ, s)Re [h12(k, τ, s)∂h∗12(k, τ, s)/∂k`]

|h12(k, τ, s)|
√

[hz(k, τ, s)]
2 + |h12(k, τ, s)|2

+ i
Im [h12(k, τ, s)∂h∗12(k, τ, s)/∂k`]

|h12(k, τ, s)|

− |h12(k, τ, s)|∂hz(k, τ, s)/∂k`√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2

}
, (14)
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j
cc(vv)
` (k, τ, s) ≡ 〈uc(v)

k,τ,s|j`|u
c(v)
k,τ,s〉 = − e

~

{
∂h0(k, τ, s)

∂k`

± hz(k, τ, s)∂hz(k, τ, s)/∂k` + Re [h12(k, τ, s)∂h∗12(k, τ, s)/∂k`]√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2

}
,

(15)

κcv
`` (k, τ, s) ≡ 〈uc

k,τ,s|κ``|uv
k,τ,s〉

=
( e
~

)2
{
hz(k, τ, s)Re [h12(k, τ, s)∂2h∗12(k, τ, s)/∂k2

` ]

|h12(k, τ, s)|
√

[hz(k, τ, s)]
2 + |h12(k, τ, s)|2

+ i
Im [h12(k, τ, s)∂2h∗12(k, τ, s)/∂k2

` ]

|h12(k, τ, s)|

− |h12(k, τ, s)|∂2hz(k, τ, s)/∂k
2
`√

[hz(k, τ, s)]
2 + |h12(k, τ, s)|2

}
, (16)

and

κ
cc(vv)
`` (k, τ, s) ≡ 〈uc(v)

k,τ,s|κ``|u
c(v)
k,τ,s〉 = −

( e
~

)2
{
∂2h0(k, τ, s)

∂k2
`

± hz(k, τ, s)∂
2hz(k, τ, s)/∂k

2
` + Re [h12(k, τ, s)∂2h∗12(k, τ, s)/∂k2

` ]√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2

}
.

(17)

We note that intra-band matrix elements (e.g. jcc
y and κcc

yy) have a definite
parity while inter-band ones (e.g. jcv

y and κcv
yy) do not respect the parity

symmetry. This fact is at the origin of the vanishing of the paramagnetic
contribution to even harmonic-generation response functions. Therefore, as
we will see later, only diamagnetic terms yield a finite contribution to even
harmonic-generation responses.

Supplementary Note 2 General symmetry considerations

Our continuum-model Hamiltonian is derived from a tight-binding Hamilto-
nian in which the zigzag direction of the lattice coincides with the x̂ direction.
The zigzag direction is perpendicular to the reflection (mirror) symmetry
plane of the 1L-MoS2 lattice (see Supplementary Figure 1).
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Supplementary Figure 1: Top view of the 1L-MoS2 lattice.

The n-th order optical susceptibilities χ(n)
`i1i2...in

are defined as:

P
(n)
` (ωΣ) = ε0

∑

i1i2...in

χ
(n)
`i1i2...in

(−ωΣ;ω1, ω2, . . . , ωn)Ei1(ω1)Ei2(ω2) . . . Ein(ωn) ,

(18)
where Ei and P

(n)
` are the Cartesian components of the electric field E and the

n-th order macroscopic polarization P(n), respectively, and ε0 is the vacuum
permittivity. Note that i1, i2, . . . , in are Cartesian indices and ωΣ ≡

∑
i ωi.

Since 1L-MoS2 belongs to theD1
3h symmetry group, the only non-vanishing

elements of the second-order susceptibility are[8]:

χ(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx , (19)

while for the case of the third-order response we have[8]:

χ(3)
yyyy = χ(3)

xxxx = χ(3)
yyxx + χ(3)

yxxy + χ(3)
yxyx , (20)
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and

χ(3)
xxyy = χ(3)

yyxx ,

χ(3)
xyyx = χ(3)

yxxy ,

χ(3)
xyxy = χ(3)

yxyx . (21)

In the case of a linearly-polarized pump laser, we expect a SHG maximum
when the laser is polarized along the ŷ direction, i.e. perpendicular to the
zigzag direction. On the contrary, if the incident light is polarized along the x̂
direction, i.e. the zigzag direction, we expect a vanishing SHG signal due to
the reflection symmetry (i.e. σv : x → −x) along this axis. Our continuum-
model Hamiltonian is consistent with these general expectations based on
symmetry and we therefore find χ

(2)
xxx = 0, even in the presence of trigonal

warping. This is because the contribution in the two valleys identically cancel
each other.

Using Supplementary Equations (18),(19),(20) and (21) we obtain Eqs.
(3),(4) of the main text, which describe the dependence between induced
charge polarization, P, and the polarization of the incident laser. In the
case of a circularly-polarized pump laser, we have E = |E|ε̂± with ε̂± =
(x̂± iŷ)/

√
2. Using Eqs. (3),(4) of the main text we arrive at the following

results for the circularly-polarized pump laser:

P(2) = ∓i
√

2ε0χ
(2)
yyy|E|2ε̂∓ (22)

and
P(3) = 0 . (23)

Supplementary Equation (22) implies an opposite polarization of the SHG
signal with respect to the pump laser, while Supplementary Equation (23)
implies no THG signal in response to a circularly-polarized pump laser.

For quantitative results only the following three tensor elements: χ(2)
yyy,

χ
(3)
yyyy and χ

(4)
yyyy are required for second-, third- and fourth-order nonlinear

response functions, respectively.

Supplementary Note 3 Nonlinear response functions

The response of an electron system to light can be calculated by adopting
different gauges for describing the electric field of incident light. The gauge
in which a uniform electric field E(t) is described in terms of a uniform
time-dependent vector potential, E(t) = −∂A(t)/∂t, is convenient in solids
as it does not break Bloch translational invariance. The vector potential
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couples to matter degrees of freedom through the minimal coupling, i.e. k→
k + eA/~. The external vector potential induces a current J(t), which can
be expanded in a power series of A(t). For each Cartesian component, we
write J` =

∑
n J

(n)
` where n denotes the n-th order in powers of A(t). In

Fourier transform with respect to time we therefore obtain:

J
(n)
` (ωΣ) ≡

∑

i1,i2,...,in

Π
(n)
`i1i2...in

(−ωΣ;ω1, ω2, . . . , ωn)Ai1(ω1)Ai2(ω2) . . . Ain(ωn) ,

(24)
where A(ωi) = −iE(ωi)/(ωi + iη/~) and η is an infinitesimal positive real
number, which is needed to make sure that the external field is absent in the
remote past (t→ −∞).

Since the macroscopic current is related to the macroscopic polarization
by J(t) = ∂P/∂t [9], we get J(n)(ωΣ) = −i(ωΣ + iη/~)P(n)(ωΣ), for each
order in perturbation theory.

We finally find the following relation between nonlinear response functions
and optical susceptibilities:

ε0χ
(n)
`i1i2...in

(−ωΣ;ω1, . . . , ωn) = i(−i)n Π
(n)
`i1i2...in

(−ωΣ;ω1, . . . , ωn)

(ωΣ + iη/~)(ωn + iη/~) . . . (ω1 + iη/~)
.

(25)
The n-th order nonlinear response function Π

(n)
`i1i2...in

contains both param-
agnetic and diamagnetic current contributions, which will be denoted by
Π

(n),P
`i1i2...in

and Π
(n),D
`i1i2...in

, respectively. The paramagnetic current correlators,
which are diagrammatically illustrated in Supplementary Figure 2, read:

Π
(1),P
`i1

(iν) ≡
〈
ĵi1(−iν)ĵ`(iν)

〉
, (26)

Π
(2),P
`i1i2

(−iνΣ; iν1, iν2) ≡
′∑

P

〈
ĵi1(−iν1)ĵi2(−iν2)ĵ`(iνΣ)

〉
, (27)

Π
(3),P
`i1i2i3

(−iνΣ; iν1, iν2, iν3) ≡
′∑

P

〈
ĵi1(−iν1)ĵi2(−iν2)ĵi3(−iν3)ĵ`(iνΣ)

〉
, (28)

and

Π
(4),P
`i1i2i3i4

(−iνΣ; iν1, iν2, iν3, iν4)

≡
′∑

P

〈
ĵi1(−iν1)ĵi2(−iν2)ĵi3(−iν3)ĵi4(−iν4)ĵ`(iνΣ)

〉
. (29)
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FIG. 1. defaultSupplementary Figure 2: Three-, four-, and five-leg Feynman diagrams for
the second-, third-, and fourth-order nonlinear paramagnetic response func-
tions. Solid lines denote electron propagators while dashed lines denote pho-
tons. The quantities ω1 = · · · = ω4 = ω indicate the incoming photon
frequencies, while ĵα denotes the α-th Cartesian component of the paramag-
netic current operator.

Here, 〈. . . 〉 denotes the thermal averaging[7, 10], ĵi indicates the second-
quantized form of i-th Cartesian component of the paramagnetic current op-
erator,

∑′
P enforces the so-called “intrinsic permutation symmetry” among

all dummy variables (in, νn)[11], and νΣ =
∑

i νi, where νi = 2πn/β’s are
bosonic Matsubara energies corresponding to the incident photon energies.
Here, n is a relative integer and β = 1/(kBT ), with T the electron tempera-
ture.

The paramagnetic current correlators in Supplementary Equations (26)-
(29) can be calculated by using many-body diagrammatic perturbation theory[12,
13]. Following Ref.[13], we first perform the summation over the fermionic
Matsubara energies and then carry out the analytical continuation νi = ν →
~ω + iη where η → 0+. We find the following relations for the case of
` = in = y:

Π(1),P
yy (ω) =

∑

k,τ,s

∑

{λi}

Uλ1λ2j
λ2λ1
y jλ1λ2y , (30)

Π(2),P
yyy (−2ω;ω, ω) =

∑

k,τ,s

∑

{λi}

jλ3λ2y jλ2λ1y jλ1λ3y

2(~ω + iη) + ελ1k,τ,s − ελ3k,τ,s
(Uλ1λ2 − Uλ2λ3) ,

(31)
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Π(3),P
yyyy (−3ω;ω, ω, ω) =

∑

k,τ,s

∑

{λi}

jλ4λ3y jλ3λ2y jλ2λ1y jλ1λ4y

3(~ω + iη) + ελ1k,τ,s − ελ4k,τ,s
×

{
Uλ1λ2 − Uλ2λ3

2(~ω + iη) + ελ1k,τ,s − ελ3k,τ,s
− Uλ2λ3 − Uλ3λ4

2(~ω + iη) + ελ2k,τ,s − ελ4k,τ,s

}
, (32)

and

Π(4),P
yyyyy(−4ω;ω, ω, ω, ω) =

∑

k,τ,s

∑

{λi}

jλ5λ4y jλ4λ3y jλ3λ2y jλ2λ1y jλ1λ5y

4(~ω + iη) + ελ1k,τ,s − ελ5k,τ,s
{

1

3(~ω + iη) + ελ1k,τ,s − ελ4k,τ,s

×
[

Uλ1λ2 − Uλ2λ3
2(~ω + iη) + ελ1k,τ,s − ελ3k,τ,s

− Uλ2λ3 − Uλ3λ4
2(~ω + iη) + ελ2k,τ,s − ελ4k,τs

]

− 1

3(~ω + iη) + ελ2k,τ,s − ελ5k,τ,s

×
[

Uλ2λ3 − Uλ3λ4
2(~ω + iη) + ελ2k,τ,s − ελ4k,τ,s

− Uλ3λ4 − Uλ4λ5
2(~ω + iη) + ελ3k,τ,s − ελ5k,τ,s

]}
. (33)

For simplicity, we introduce the quantity Uλλ′ as follows:

Uλλ′(k, ω, τ, s) ≡
1

S
nF(ελk,τ,s)− nF(ελ

′

k,τ,s)

~ω + ελk,τ,s − ελ
′

k,τ,s + iη
, (34)

where S is the sample area. All sums over band indices are limited to one
conduction and one valance band, i.e. λ, λ′ = c, v, and

nF(E) =

{
exp

(
E − µ
kBT

)
+ 1

}−1

(35)

is the Fermi-Dirac distribution function at finite temperature T and chemi-
cal potential µ. In Supplementary Equations (30)-(33) we dropped the ex-
plicit functional dependence on k, τ, s, e.g. jmny = jmny (k, τ, s) and Umn =
Umn(k, ω, τ, s). We find most convenient to first carry out the sum over the
band indices λi and then carry out numerically the integral over the wave
vector k.

The paramagnetic contributions to the even-order response functions,
Π

(2),P
yyy and Π

(4),P
yyyyy, vanish identically because εc(v)

k,τ,s is an even function of ky.
This property of the energy dispersion is protected by symmetry, and stems
from time-reversal (T ) and reflection (σv) symmetries.
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A microscopic calculation of even-order response functions requires the
knowledge of diamagnetic contributions. These can be included with the aid
of correlation functions involving the κ̂yy operator. In fact, ξ̂yyy could also
contribute to diamagnetic responses. However, in our low-energy model ξ̂yyy
is identically zero. Similar to the paramagnetic case, κ̂yy and ξ̂yyy indicate
the second-quantized form of the diamagnetic current operators (i.e. κyy and
ξyyy). Diamagnetic contributions to the second- and third-order response
functions are reported in Supplementary Figure 3, in terms of Feynman
diagrams. For the sake of simplicity, we have not calculated diamagnetic
contributions to the fourth-order response.

(a)

2!

ĵy
�!
̂yy

�!
+

2!

̂yy

�!
�!

ĵy

3!

̂yy

�!

�!
̂yy

�!

(b)

�

�!
ĵy

3!

̂yy

�!

�
!

ĵ
y

� �!

̂yy

�!

3!

ĵy

�
!

ĵ
y

2 Permutations

Supplementary Figure 3: Feynman diagrams for the diamagnetic contribu-
tions to the second- and third-order response functions. a) second-order
response. b) third-order response.

According to Supplementary Figure 3a, the diamagnetic contribution to
the second-order response is given by:

Π(2),D
yyy (−2ω;ω, ω) = −

∑

k,τ,s

∑

{λi}

[
Uλ1λ2j

λ1λ2
y κλ2λ1yy + Ũλ1λ2κ

λ1λ2
yy jλ2λ1y

]
. (36)

Similarly, the diamagnetic contribution to the third-order response, Supple-
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mentary Figure 3b,is given by:

Π(3),D
yyyy (−3ω;ω, ω, ω) =

∑

k,τ,s

∑

{λi}

Ũλ1λ2κ
λ1λ2
yy κλ2λ1yy

−
∑

k,τ,s

∑

{λi}

jλ3λ2y jλ2λ1y κλ1λ3yy

2(~ω + iη) + ελ1k,τ,s − ελ3k,τ,s
(Uλ1λ2 − Uλ2λ3)

−
∑

k,τ,s

∑

{λi}

′∑

P

κλ3λ2yy jλ2λ1y jλ1λ3y

3(~ω + iη) + ελ1k,τ,s − ελ3k,τ,s

(
Ũλ1λ2 − Uλ2λ3

)
.

(37)

Here, Ũλ1λ2 = Uλ1λ2(k, 2ω, τ, s) with κmnyy = κmnyy (k, τ, s) is the matrix element
of κyy.

Since our low-energy model is valid for a limited range of values of the
wave vector k, we must introduce an ultra-violet cut-off, which breaks gauge
invariance[14]. We therefore need to regularize our final results to avoid
un-physical response function. This can be accomplished[14] by consider-
ing the following gauge-regularized response tensors: Π

(n)
`i1i2...in

≡ Π
(n)
`i1i2...in

−
Π

(n)
`i1i2...in

∣∣
{ωi}→0

.
We note that the summands in Supplementary Equations (31),(33) and

(36) contain an odd number of matrix elements of the paramagnetic (jy) and
diamagnetic (κyy) current operators. In the absence of trigonal warping, the
overall form-factor, which is proportional to these matrix elements, is an odd
function of ky: we therefore conclude that, in the absence of trigonal warping,
Π

(2)
yyy(−2ω;ω, ω) = Π

(4)
yyyyy(−4ω;ω, ω, ω, ω) = 0. An identical conclusion was

reached for other isotropic low-energy continuum model Hamiltonians, such
as those describing gapped graphene[15] and biased 2LG[16, 17]. We there-
fore expect the second-order nonlinear response function Π

(2)
yyy to be small

compared to the third-order one, since it is controlled by a small trigonal
warping correction (Htw) in comparison with the fully isotropic leading term
(Hi) in the low-energy model Hamiltonian. Of course, this conclusion is valid
within the single-particle picture and in the low-energy limit, which we have
relied on so far.

We now discuss how to evaluate the paramagnetic third order response
function defined by the square diagram and given in Supplementary Equation
(32). Similar steps are used for the diamagnetic part of the third order
response, see Supplementary Figure 3b, as well as for the second and fourth
order response functions. After performing the summation over the band
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indices in Supplementary Equation (32), we obtain:

Π(3),P
yyyy (−3ω;ω, ω, ω) = (ev)4

∫ kc

0

kdk

2π

∑

τ,s

3∑

n=1

ζn(k, τ, s)
nF(εck,τ,s)− nF(εvk,τ,s)

dcv(k, τ, s)2

×
[

1

dcv(k, τ, s) + (~ω + iη)n
+

1

dcv(k, τ, s)− (~ω + iη)n

]

(38)

where kc is the ultra-violet cut-off, v = t0a0/~, dcv(k, τ, s) = εck,τ,s− εvk,τ,s and
ζn(k, τ, s) are dimensionless functions given by:

ζ1(k, τ, s) =
1

(ev)4

∫ 2π

0

dφ

2π

[
1

6
(jcc
y − jvv

y )2|jcv
y |2 +

1

4
|jcv
y |4
]
, (39)

ζ2(k, τ, s) =
1

(ev)4

∫ 2π

0

dφ

2π

[
−8

3
(jcc
y − jvv

y )2|jcv
y |2
]
, (40)

ζ3(k, τ, s) =
1

(ev)4

∫ 2π

0

dφ

2π

[
9

2
(jcc
y − jvv

y )2|jcv
y |2 −

9

4
|jcv
y |4
]
, (41)

where φ is the azimuthal angle of k vector. We consider the full anisotropic
dispersion of 1L-MoS2 and the integrations are handled numerically. Supple-
mentary Equation (38) is also valid for other two-band LMs.

Using the isotropic model of 1L-MoS2, see Supplementary Equation (1),
we check the scaling of paramagnetic THG efficiency, ΥP

THG, with inter-band
coupling, v. We consider the chemical potential inside the band gap (un-
doped µ = 0) which implies nF(εck,τ,s) = 0 and nF(εvk,τ,s) = 1 at zero temper-
ature. Therefore we can rewrite Eq.38 in terms of density of states notation,
ρτs(ε),

Π(3),P
yyyy (−3ω;ω, ω, ω) ≈ −(ev)4

∑

τ,s

3∑

n=1

∫ W

−W
dε
ρτ,s(ε)

ε2
ζn(ε, τ, s)

×
[

1

ε+ (~ω + iη)n
+

1

ε− (~ω + iη)n

]
. (42)

where W is the ultra-violet cut-off energy. Considering the isotropic k · p
Hamiltonian for 1L-MoS2, see Supplementary Equation (1), one can find the
density of states for given spin and valley:

ρτ,s(ε) ≈
|ε|

2π(~v)2

[
Θ
(
ε− ε+τ,s

)
+ Θ

(
−ε+ ε−τ,s

)]
. (43)
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where ε±τ,s = ±[∆ ± (λ − λ0)τs]/2 stands for the conduction(+)/valence(−)
band edge energy for each pair of spin and valley. For simplicity, we neglect α
and β terms in the density of states. From Supplementary Equations (42,43),
we get Π

(3),P
yyyy ∝ v2. Therefore the paramagnetic THG efficiency scales like:

ΥP
THG ∝ |Π(3),P

yyyy |2 ∝ v4 . As discussed in the main text, this scaling is the
main reason for having intense THG in 1L-MoS2, because the inter-band
coupling, v, is very strong, v ≈ 0.65c/300 with c as the speed of light in
vacuum.

Supplementary Note 4 Relative magnitude of nonlinear responses:
ratios of irradiances
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Supplementary Figure 4: Frequency dependence of the second-order response
function Π

(2)
yyy (in units of Π

(2)
0 ). Different curves refer to different values of

the parameter kc.

To quantify the relative magnitude of nonlinear harmonic signals, we cal-
culate ratios between induced polarizations P (n)

y at different orders n in per-
turbation theory. For a linearly-polarized incident laser (e.g. E = |E|ŷ) we
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Supplementary Figure 5: Same as in Supplementary Figure 4, but for the
case of the third-order response function.

find:

∣∣∣∣∣
P

(n+1)
y

P
(n)
y

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

χ
(n+1)
y . . . y︸ ︷︷ ︸
n+2 times

|E|

χ
(n)
y . . . y︸ ︷︷ ︸
n+1 times

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

Π
(n+1)
y . . . y︸ ︷︷ ︸
n+2 times

/Π
(n+1)
0

(~ω + iη)/(1eV)× Π
(n)
y . . . y︸ ︷︷ ︸
n+1 times

/Π
(n)
0

∣∣∣∣∣∣∣∣∣

×
(

nΠ
(n+1)
0 ~

(n+ 1)Π
(n)
0 (1eV)

)
× |E|

=
n

n+ 1
× t0

1eV
× a0

1m
× |E|

1Vm−1
×Xn+1,n(ω) , (44)

where

Π
(n)
0 ≡ (et0a0/~)n+1

8πa2
0(1eV)n

=
(1eV)(1mn−1)

8π

(
t0

1eV

)n+1 ( a0

1m

)n−1 ( e
~

)n+1

(45)

and the quantities t0 and a0 have been introduced in the Hamiltonian H.
Π0 represents the physical dimensions of the nonlinear current correlator
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Supplementary Figure 6: Results for the X3,2 as function of the pump laser
frequency. Vertical dashed lines is positioned at ~ω = 0.8 eV.

Π
(n)
`i1i2...in

(−ωΣ;ω1, ω2, . . . , ωn). The units of Π
(n)
0 are Cmn−1V−ns−(n+1). The

dimensionless quantities Xn+1,n are given by:

Xn+1,n(ω) =

∣∣∣∣∣∣∣∣∣

Π
(n+1)
y . . . y︸ ︷︷ ︸
n+2 times

/Π
(n+1)
0

(~ω + iη)/(1eV)× Π
(n)
y . . . y︸ ︷︷ ︸
n+1 times

/Π
(n)
0

∣∣∣∣∣∣∣∣∣
. (46)

The amplitude of the electric field (|E|) in Supplementary Equation (44) can
be replaced by the power of the pump laser (Ppump) by using the following
relation:

Ppump

π(D/2)2
=

1

2
nrcε0|E|2 , (47)

where D ≈ 1.85 µm is the experimental spot size diameter, nr ≈ 1 is the
refractive index of air, c ≈ 3 × 108 m s−1 is the speed of light in vacuum,
and ε0 ≈ 8.85× 10−12 CV−1m−1 is the vacuum electrical permittivity. Using
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Maxwell’s equations, we can obtain the following wave equation in a nonlinear
medium[8]:

∇2E(n) +
(ωn
c

)2

ε(1)(ωn) · E(n) = − 1

ε0

(ωn
c

)2

P(n) . (48)

where n = 2, 3, . . . indicates the order of nonlinearity, ε(1) is the linear di-
electric tensor and P(n) is the n-th order polarization vector. The intensity
I(n) of the n-th order nonlinear signal is proportional to the square of the in-
duced electric field amplitude E(n) ∝ ω2

nP
(n)
y where ωn = nω for the harmonic

generation case. Inserting Supplementary Equation (47) in Supplementary
Equation (44) we find:

I(n+1)

I(n)
=

(
n+ 1

n

)2
∣∣∣∣∣
P

(n+1)
y

P
(n)
y

∣∣∣∣∣

2

= Rn+1,n(ω)Ppump , (49)

where Rn+1,n(ω) in units of W−1 is given by:

Rn+1,n(ω) =
8[m s−1][CV−1m−1]

πnrcε0

[
t0/(1eV)× a0/(1m)

D/(1m)

]2

[Xn+1,n(ω)]2 .

(50)
If we assume that the spot size of different harmonic-generated signals on the
detector are equal to each other, we can write the following relation between
power and intensity ratios:

I(n+1)

I(n)
≈ P(n+1)ω

Pnω
, (51)

where Pnω denotes the signal power of the n-th harmonic-generated signal.
Our main results for the 1L-MoS2 nonlinear response functions are sum-

marized in Supplementary Figures 4-6. We use the following values: ∆ =
1.82 eV, λ0 = 69 meV, λ = −80 meV, t0 = 2.34 eV, α = −0.01, β = −1.54,
t1 = −0.14 eV, t2 = 1 eV, α′ = 0.44, and β′ = −0.53. These parame-
ters are obtained from a tight-binding fitting[1] of LDA-DFT band structure
calculations[19, 20]. In all our numerical results, we use T = 300 K and
µ = 0. In Supplementary Figures 4-6, we check the dependence of our re-
sults on the value of the ultra-violet cut-off, kc ∝ 1/a0. Note that a0 = a/

√
3

with a ≈ 3.16 Å is the lattice constant of 1L-MoS2.
According to Supplementary Figures 4,5, the nonlinear response functions

start to grow when ~ω is larger than (∆ + λ)/2 and (∆ + λ)/3 for the SHG
and THG cases, respectively. ∆ + λ is the optical band gap of MoS2. In our
energy range (< 1 eV) the spectra of the second and third order response
functions are not very sensitive to the value of kc. The theoretical results
in Fig.4c) of the main text are obtained by using Supplementary Equations
(50),(49) for ~ω = 0.8 eV.
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