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ABSTRACT 
We report an ultrafast laser mode-locked with a graphene saturable absorber. The linear dispersions of the Dirac 
electrons in graphene enable wideband tunability. We get ~1 ps pulses, tunable between 1525 and 1559 nm, with 
stable mode-locking, insensitive to environmental perturbations. 
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1. Introduction 

Ultrafast passively mode-locked fiber lasers with 
spectral tuning capability have widespread applications 
in biomedical research, spectroscopy, and telecom- 
munications [1–3], due to their simplicity, compactness 
and efficient heat dissipation [2–6]. Currently, the 
dominant technology is based on semiconductor 
saturable absorber mirrors (SESAMs) [2–4]. However, 
these have a narrow tuning range, and require complex 
fabrication and packaging [2, 7]. A simple, cost- 
effective alternative is to use carbon nanotubes (CNTs) 
[8–36]. In CNTs the diameter controls the bandgap, 
thus, defining the operating wavelength. Broadband 
tunability is possible using CNTs with a wide diameter 
distribution [14, 36, 37]. However, when operating at 
a particular wavelength, CNTs not in resonance are  
not used and give insertion losses. 

After the first demonstration of a graphene-based 

mode-locker [32], a variety of lasers were reported 
exploiting graphene saturable absorbers for ultrafast 
pulse generation at 1 and 1.5 µm [38–46]. Reference [38] 
explained the fundamentals of the photo-excited carrier 
dynamics, which leads to Pauli-blocking and thus, 
saturable absorption, with good agreement between 
theory and experiment. The linear dispersion of the 
Dirac electrons in graphene provides an ideal  solution 
for wideband ultrafast pulse generation [38]. Wave- 
length tuning in graphene-based lasers has recently 
been achieved by exploiting fiber birefringence [44, 45]. 
However, fiber birefringence is sensitive to temperature 
fluctuations and other environmental instabilities 
[47], making this approach not ideal for long-term 
stability, a key requirement for mode-locked lasers 
used in practical applications. The 49 ps pulse  
width reported in Ref. [45] can be easily achieved by 
Q-switching [48], thus does not demonstrate the 
merits of the mode-locking technology. Furthermore, 
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the output pulses in Ref. [45] are strongly chirped, 
with a time-bandwidth product (TBP) of 44.3. Therefore 
these are not transform-limited, i.e., the duration is 
not the shortest allowed for a given pulse spectral 
width. For a range of applications, transform-limited 
pulses are a prerequisite [49]. For example, in optical 
fiber communications, transform-limited pulses mini- 
mize the effect of chromatic dispersion during pro- 
pagation in the fiber, thus, maximizing the transmission  
distance [49]. 

Here, we demonstrate an ultrafast tunable fiber laser 
mode-locked by a graphene-based saturable absorber, 
with stable mode-locking over a range of 34 nm, 
insensitive to environmental perturbations. The tuning 
range is limited only by the tunable filter, with a wider 
tuning range potentially obtainable with a broader 
filter. The output pulse duration is ~1 ps. The TBP is 0.4, 
and the pulses are near-transform-limited, and thus,  
viable for practical applications. 

2. Experimental 

2.1 Device fabrication and characterization 

The saturable absorber is prepared by surfactant- 
assisted liquid phase exfoliation of graphite flakes 
[38]. To obtain an aqueous dispersion, 1.2 wt.% of 
micronized graphite flakes are sonicated for ~3 h in  
a bath sonicator with 0.5 wt.% sodium deoxycholate 
(SDC), a bile salt surfactant. These surfactants, because 
of their flat molecular structure, adsorb readily on 
hydrophobic graphite surfaces [50, 51]. Their β side 
has a larger contact area (1.8–3 nm2) per surfactant 
molecule [52] than linear chain surfactants (e.g., sodium 
dodecylbenzene sulfonate (SDBS) [53, 54]), which 
adsorb on graphitic surfaces through their alkyl chains 
[55]. The unexfoliated graphitic particles are allowed 
to settle for 10 min after sonication before being cen- 
trifuged at 10,000 r/min (17,000 g) for 1 h. The top 70% 
of the dispersion is decanted for characterization and 
composite fabrication. 

A PerkinElmer spectrometer is used for absorption 
measurements. Raman measurements on dropcast 
flakes are carried out using a Renishaw spectrometer 
at 514.5 nm excitation. Transmission electron micros- 
copy (TEM) images are recorded using a JEM-3000F 

field emission gun (FEG) TEM at 300 kV. For TEM, the 
dispersions were dropped onto a lacey carbon support  
grid (400 mesh).  

The absorption spectrum of the centrifuged 
dispersion diluted to 10% is shown in Fig. 1(a). The 
spectrum is mostly featureless [38, 56, 57] a part from 
a peak in the UV region due to the exciton-shifted van 
Hove singularity in the graphene density of states [57, 
58]. Absorption spectroscopy may be used to estimate 
the concentration of single-wall nanotubes (SWNTs) 
[59, 60] and graphene flakes [53, 61] from the Beer– 
Lambert law. Using the absorption coefficient of 1390 
L·g–1·m–1 for aqueous graphite dispersions at 660 nm 
as empirically determined in Ref. [53], we estimate a 
graphene concentration of ~0.18 g·L–1 in the centrifuged  
dispersion. 

Figure 1(b) shows a TEM image of a folded single 
layer graphene (SLG). TEM statistics indicates that in 
the dispersions were composed of ~26% SLG, 22% bi- 
layer (BLG), with the remainder being few-layer gra- 
phene (FLG) flakes. Of the BLGs, ~40% are folded SLGs. 

The Raman spectrum of a representative exfoliated 
graphene flake is shown Fig. 1(c). In addition to the 
G and 2D peaks, the spectrum shows significant    
D and Dʹ intensities. The G peak corresponds to the 
E2g phonon at the Brillouin zone centre. The D peak 
originates from the breathing modes of sp2 rings and 
requires a defect for its activation by double resonance 
(DR) [62–64]. The 2D peak is the second order of the 
D peak. It is a single band in SLG, but splits in four 
subbands in BLG, reflecting the evolution of the band 
structure [62]. The 2D peak is always seen, even in 
the absence of a D peak, as no defects are required 
for the activation of two phonons with the same 
momentum, one backscattering from the other. DR 
can also arise intra-valley, i.e., connecting two points 
belonging to the same cone around K or Kʹ, giving 
the Dʹ peak. The large D intensity observed in Fig. 1(c) 
is not due to a large amount of disorder, otherwise 
the band would be much broader, and G would 
merge with Dʹ [63]. Instead, we assign it to the edges of 
the sub-micrometer flakes [65]. We note that 2D, 
although broader than in pristine graphene [62], is 
still a single Lorentzian. Thus, even if FLG are 
present, these behave as decoupled SLGs, retaining  
the linear dispersion of Dirac fermions [66]. 

To prepare the composite, aqueous solutions  
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Figure 1 (a) Absorption spectrum of graphene dispersed in 
aqueous SDC solution. The absorption contributions from water 
and the surfactant have been subtracted. (b) TEM image of a 
folded flake. (c) Raman spectrum of a flake deposited on a Si 
wafer 

containing 120 mg polyvinyl alcohol (PVA; Wako 
Chemicals) are sonicated with 4 mL of centrifuged 
graphene dispersion. The water is then slowly 
evaporated in a desiccator at room temperature, 
resulting in a ~50 µm thick graphene–PVA (GPVA) 
composite [32, 38]. Compared to other fabrication 
strategies for graphene saturable absorbers [39–46], 
our approach is easily scalable, and allows integration  
into various photonic systems [32, 38, 46]. 

Power-dependent absorption at six wavelengths is 
measured using an all-fiber based setup described in 
Ref. [32] (see Fig. 2) by sandwiching the GPVA film 
between two fiber connectors (as shown in Fig. 3(a)). 
The absorption decreases by ~4.5% due to saturation 
when the incident average power is increased to  

 
Figure 2 Power-dependent absorption at six wavelengths. Input 
repetition rate: ~38 MHz; pulse duration: ~580 fs 

 
Figure 3 (a) Graphene saturable absorber assembly. (b) Tunable 
laser setup 
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5.35 mW (266 MW/cm2 power density) at 1558 nm, 
independent of wavelength. The nonlinear operation 
in terms of modulation depth and non-saturable 
absorption is comparable to that of the CNT-based  
devices reported in the Refs. [14, 19, 21, 23]. 

Note that the data in Fig. 2 are just limited by the 
availability of our pump wavelengths. Saturable 
absorption is expected over a much wider spectral 
range due to the linear dispersion of the graphene  
electrons [32, 38, 46]. 

2.2 Laser setup 

The packaged GPVA  is then integrated to form a 
tunable ultrafast laser, as shown in Fig. 3(b). The cavity 
consists of an erbium-doped fiber (EDF), followed by 
an optical isolator (ISO), a fused fiber coupler, a 
tunable filter with a 12.8 nm bandwidth, a polarization 
controller (PC), and a fused fiber wavelength division 
multiplexer (WDM). A 1.2 m EDF (Fibercore) is 
backward pumped by a 976 nm laser diode (Bookham 
LC96V74-20R) through the WDM. Unidirectional 
operation is imposed by the ISO. The PC is used to 
adjust polarization for mode-locking optimization. 
The 20% port of the 20/80 coupler feeds the pulses 
back into the cavity. The total cavity length is ~26.3 m. 
The lasing wavelength is selected by the in-line 
tunable filter. The band-pass filter angle is controlled 
by a micrometer screw, providing continuous 
tunability from 1530 to 1555 nm. This ensures stable 
mode-locking, independent of temperature and 
environmental fluctuations, unlike the wavelength 
selection strategy based on tuning fiber birefringence 
with a polarization controller used in Refs. [44, 45]. The 
pump and average output power are monitored by a 
photodiode, while the pulse duration and spectrum 
are recorded using a second harmonic generation 
(SHG) intensity autocorrelator (APE Pulsecheck 50) 
and an optical spectrum analyzer (Anritsu MS9710B),  
respectively. 

3. Results and discussion 

Continuous wave operation starts at a pump power 
of ~6 mW, giving an output power of ~35 µW. Single- 
pulse mode-locking is observed at a pump power  

of ~20 mW. The output wavelength is tunable from  
1525 to 1559 nm (see Fig. 4(a)); this is limited by the 
tunable filter used in our experiment, not by the 
graphene-saturable absorber. The full width at half 
maximum (FWHM) spectral bandwidth at a repre- 
sentative output wavelength (1553 nm) is ~3 nm. Typical 
soliton sidebands are observed, due to periodic 
intracavity perturbations [67]. The autocorrelation traces 
are shown in Fig. 4(b). Assuming a sech2 pulse shape, 
the deconvolved pulse duration is ~1 ps at 1553 nm. 
Pulse durations and time–bandwidth products (TBP) 
at different output wavelengths are shown in Fig. 5. 
The TBP at 1553 nm is ~0.4. The deviation from 0.315, 
expected for transform-limited sech2 pulses, indicates 
minor chirping [47]. The nominal tuning range of our 
filter is 1530–1555 nm, but it can also operate between  

 
Figure 4 (a) Output spectra. (b) Autocorrelation traces at different 
wavelengths 
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Figure 5 Output pulse duration (•) and time–bandwidth product 
(□) as a function of wavelength 

1525 and 1530 nm and between 1555 and 1559 nm, at 
the expense of increased insertion losses. Thus, the 
shortest and longest wavelengths that can be achieved 
are 1525 and 1559 nm. The pulse at 1525 nm is slightly 
longer, ~1.15 ps, possibly due to the higher losses. The 
average output power is ~1 mW, with ~125 pJ pulse  
energy. 

The stability is characterized from radio-frequency 
(RF) measurements of the output intensity [68]. The 
repetition rate is ~8 MHz, corresponding to ~125.5 ns 
round-trip time, as shown in Fig. 6(a). Figure 6(b) 
shows the RF spectrum of the fundamental harmonic 
frequency. The peak to pedestal extinction is ~80 dB, 
indicating low amplitude noise fluctuations [68]. 
Compared to previous tunable, graphene mode- 
locked lasers [44, 45], we can achieve significantly 
lower fluctuations, and much shorter, near transform- 
limited pulse durations, thus, showcasing the 
wideband operation capability of graphene and its  
potential as a wideband mode-locker. 

4. Conclusion 

We have demonstrated a stable, wideband tunable 
ultrafast laser using a graphene-based saturable 
absorber, generating near transform-limited ~1 ps 
pulses. The tunable output spectral range is from 
1525 to 1559 nm. Such a wideband mode-locker is ideal 
for ultrafast light sources covering a large spectral 
range for applications such as metrology, spectroscopy,  
and biomedical diagnostics. 

 
Figure 6 (a) Output pulse train; (b) RF spectrum, measured 
around the fundamental repetition rate f1 ~8 MHz over 10 kHz 
with 10 Hz resolution 
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