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Abstract—Tetrahedral amorphous (ta-C) carbon-based mem-
ory devices have recently gained traction due to their good
scalability and promising properties like nanosecond switching
speeds. However, cycling endurance is still a key challenge. In this
paper, we present a model that takes local fluctuations in sp2 and
sp3 content into account when describing the conductivity of ta-C
memory devices. We present a detailed study of the conductivity
of ta-C memory devices ranging from ohmic behaviour at low
electric fields to dielectric breakdown. The study consists of
pulsed switching experiments and device-scale simulations, which
allows us for the first time to provide insights into the local
temperature distribution at the onset of memory switching.

I. INTRODUCTION

ONE of the emerging candidates to bridge the gap between
fast but volatile DRAM [1] and non-volatile but slow

storage devices is tetrahedral amorphous carbon (ta-C) based
memory [2]–[5]. It offers a very good scalability, data retention
and sub-5 ns switching speeds [3], [4]. Amorphous carbon
memory devices can be electrically and optically switched
from the high resistance state (HRS) into the low resistance
state (LRS) [6]. The electrical conduction in the LRS is
thought to be through sp2 clusters that form a conductive
filament [5], [6].

Joule heating is assumed to be a primary contributor to
resistive switching in ta-C [6]. The conductivity varies locally
on the nanometer scale due to randomly distributed sp3 and
sp2 sites [7]–[11] and hence, large local differences in current
densities and hence in Joule heating can be expected.

A key challenge for carbon-based memory is endurance that
is the number of cycles devices can be switched between LRS
and HRS [4].

Excessive Joule heating could lead to the formation of large
spatially-extended conductive filaments that make reversible
switching back to the HRS difficult to achieve [10]. High
temperatures and high current densities could also degrade the
electrodes as the devices are switched back and forth multiple
times.

Here, we investigate Joule heating and the resulting tem-
perature distributions within ta-C memory devices at the onset
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of memory switching. This is essential to gain further insights
into the switching mechanism and to address the key challenge
of cycling endurance. The model we present accounts for both
electric field and temperature dependence of the electrical
conductivity in ta-C. We also consider local distributions of
sp2 and sp3-rich clusters. The simulations are validated with
experimental data.

II. MEMORY DEVICE AND CHARACTERISATION

The memory devices consist of Pt (W) bottom (top) elec-
trodes and a SiO2 layer that has cylindrical openings of
50 nm, 100 nm and 200 nm diameter. The opening contains a
5 nm-thick layer of ta-C deposited by filtered cathodic vacuum
arc on top of the Pt. The remainder of each opening is
filled with W, see Figure 1. The sp3 content is determined
to ≈50% using multi-wavelength Raman spectroscopy [12].
On-chip load resistors in series with the memory device limit
the current flowing through the device during the SET (i.e.
switching to LRS) process. The series resistors, 3 kΩ to 14 kΩ,
are fabricated (e-beam lithography) next to the t-aC device and
have a very small footprint to reduce their parasitic capacitance
and hence the capacitive current flowing through the device
during the SET process.

The reverse (RESET) switching process from LRS to HRS
is reported to be induced by a large temperature gradient
[4], [13] that arises between the conductive filament and the
insulating matrix once an electric pulse is applied. Hence, no
load resistor is used during the RESET process. The read out
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Figure 1. Schematic of the t-aC memory device with the electronic connec-
tions. SET and RESET pulses are applied to the bottom electrode. A load
resistor limits the current during the SET process.
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of the current during the programming is done across a 50Ω
resistor using an oscilloscope. The device resistance is read out
using a Source Measurement Unit (SMU). A schematic of the
memory device and the electrical circuit is shown in Fig. 1.
More fabrication details and information on the electrical
equipment used for the switching studies can be found in [4].

To study both the field dependence and the temperature
dependence of the t-aC conductivity, we measure the low-
field conductivity of pristine devices (HRS) for temperatures
from 85K to 300K using a cryogenic probing station (JANIS
ST-500-2-UHT). The conductivity is plotted against T−1/4 in
Fig. 2 [14], [15]. The conductivity can be fitted by a straight
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Figure 2. Conductivity of a carbon memory device measured at low voltages
from 85K to 300K.

line over the whole temperature range which indicates that the
electrical transport is mainly governed by hopping between
localised states [16]–[18].

For intermediate and high electrical fields we found agree-
ment with a Poole-type conduction behaviour (log σ∼E) for
the field-dependent part of the conductivity (see section IV-B)
[19], [20]. A Poole-type conduction behaviour is in agreement
with reports of a high defect density in ta-C [21]. The transi-
tion from ohmic conduction to exponentially field-dependent
conductivity can be described with a hyperbolic sine function
as reported in [22], [23].

First, we look at experimental switching curves for voltage
pulses of different durations. This allows us to examine the
time response of the current on the applied voltage and, as
a consequence, enables us to select a pulse long enough to
exclude any ‘undesirable‘ transient effects prior to memory
switching (e.g., due to thermal capacitances [24]). This, in
turn, allows us to obtain a realistic temperature profile of the
memory device at the onset of memory switching.

Therefore, we compare device I-V characteristics for a
typical trapezoidal voltage with a 15 ns leading edge (LE)
followed by a 45 ns plateau and a 15 ns trailing edge (TE)
[4] with a quasi-static triangular pulse with 5 µs LE and TE.
The AC voltage outputs were supplied by an Agilent 81150A
Arbitrary Waveform Generator and captured with a Tektronix
TDS3054B oscilloscope. The voltages applied across the de-
vice are plotted (blue) in Fig. 3 together with the voltage drop
across the ta-C cell (black) and the corresponding currents.
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Figure 3. Applied voltage over devices (blue) and cells (black) together with
the corresponding current response for a),b) fast (80ns) and c),d) slow (10 µs)
pulses.

For noise reduction a 200MHz software filter is applied to
the current and voltage signals during post-processing with
the exception of the actual switching event.

The voltage pulse in Fig. 3a) reaches the plateau of the
trapezoidal pulse after 15 ns, during which little or no increase
in current, see Fig. 3b), is noted (1). The current then begins
to increase (2) and a dielectric breakdown sets in after 30 ns
(3). From then on the current follows the voltage pulse (4).
This indicates that the electric field alone, in the absence of
sufficiently large currents, does not trigger memory switching.

No such time lag can be observed for the slow, quasi-
static pulse. There, the current, see Fig. 3c), always follows the
voltage pulse Fig. 3d) until dielectric breakdown occurs after
4.8 µs (5) and the device is switched from its HRS into the
LRS. Therefore, to validate the simulations we used a quasi-
static pulse with 5 µs leading and trailing edge.

III. MODEL IMPLEMENTATION

To obtain the temperature distribution in the device when
a voltage is applied we use a finite element software package
(COMSOL®) to solve the coupled heat and Laplace equations.

To reflect local sp2 variations in our model we randomly
distribute different sp2-rich cluster concentrations within the
simulation cells.

To ensure that a relatively small number of sp3-defects
within a graphitic plane suffices to interrupt a conjugated π-
network (see [8]) and to account for the sp2 bonded clusters
that do not participate in the conduction, we set the thresh-
old for sp2-like conduction to 92% within each simulation
cell. The simulated initial conductivity for a ta-C cell with
randomly distributed sp2 clusters is shown in Fig. 4.

An electric circuit was added to the electro-thermal model
to account for a load resistor which, as seen in section II, is
typically used to limit the current in the device after it has
switched into the LRS.
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Figure 4. Initial conductivity for randomly distributed sp2-like conductive
clusters (red); top shows conductivity in the x,y-plane (at z = 3.3 nm), bottom
shows conductivity in the y,z-cross-section (indicated by the dotted line).

The most important material properties used in the simula-
tion are given in Table I.

Table I
MATERIAL PARAMETERS

sp3-content (%)1 50

Beta (α, β)2 2.65, 2.65

σsp2 (Sm−1) (cf. [13]) 1.2× 105

σsp3,ohmic @ 300 K (Sm−1) 0.0115

σ00 (Sm−1) 0.345 · exp
(
− 220 [K1/4]

T1/4

)
σsp3 (Sm−1) σ00 · sinh

(
E

9.5·109
[
V
m

]
)

+ σsp3,ohmic

Threshold σsp2 (%) 92

ρ (kgm−3) [25] 3460− 1880× sp2

λ
(
WK−1 m−1

)
[26] 1.77 · ρ− 2.82

Cp,avg
(
J kg−1 K−1

)
3 2050

1 Determined using multi-wavelength Raman spectroscopy
2 Beta distribution with parameters α and β
3 Average heat capacity of a memory cell computed from molecular

dynamic simulations

IV. RESULTS & DISCUSSION

A. Isothermal Field-Dependent Conductivity

To validate our model and to determine the field-dependent
part of the conductivity we compare our simulation results
with an experimentally measured device conductivity (Keith-
ley 2636B SMU). We use voltages high enough (≈ 0.1V) to
observe the exponential dependence of the conductivity on the
applied voltage, but low (≈ 1.1V) enough to keep the Joule
heating below 1K.4 The maximum temperature within the cell
is plotted as function of the applied voltage in Fig. 5. The
simulated conductivity is compared with experimental data in

4The temperature increase was verified a posteriori with simulation results.
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Figure 5. Local temperature evolution as function of the applied voltage.

Fig. 6. The simulation (red) describes the isothermal part of
the conductivity (blue) very well up to electric fields of around
2× 108 Vm−1.

B. Joule Heating Effects at Dielectric Breakdown

To investigate Joule heating effects at the onset of dielectric
breakdown we apply the triangular switching pulse shown
in Fig. 3d). For both, experiment and simulation a 13.3 kΩ
load resistor is used. The oscilloscope is programmed to
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Figure 6. Measured and simulated conductivity of a carbon memory device
as a function of the absolute value of the applied voltage.

ensure to capture the currents present at dielectric breakdown
and as a consequence is insensitive to low currents at low
voltages. Therefore, we only present here experimental high-
field data for voltages from |V | = 2.2V until the onset of the
dielectric breakdown (i.e. |V | = 2.7V). The whole current vs.
time response is depicted in Fig. 3c). The experimental and
simulated conductivities are shown in Fig. 6.

The simulation describes the experimentally determined
conductivity (blue, green) for all electric field ranges up to the
point where dielectric breakdown (|V | = 2.7V) occurs very
well. The current flowing through the device at the onset of
the dielectric breakdown is |I| = 40 µA.

The very good agreement between simulated and experi-
mentally determined conductivity allows us for the first time
to confidently investigate the local temperature distribution on
the device-scale using a realistic switching pulse (see Fig. 3d).
The temperature distribution within the memory cell is thus
presented in Fig. 7.
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Figure 7. Temperature distribution at dielectric breakdown; top shows
distribution in the x,y-plane (at z = 3.3 nm), bottom shows distribution in
the y,z-cross-section (indicated by the dotted line); applied voltage is −3.2V.

The highest temperatures are obtained at z = 3.3 nm,
close to the mid-plane of the 5 nm thick ta-C layer. The
electrodes remain close to room temperature, 311K at the
Pt//ta-C interface and 337K at the W//ta-C interface which
is expected as the metal electrodes act as heat sinks [4]. The
observed high temperatures close to the mid-plane of up to
1615K are in agreement with reports from molecular dynamic
(MD) simulations [4]. The obtained hot spots are likely to
indicate the origin where filament formation(s) after dielectric
breakdown take(s) place.

These findings emphasise the relevance of taking local
variations in conductivity into account and underline the
importance of numerical modelling to obtain a detailed tem-
perature profile of the memory cell which is not accessible
otherwise. To illustrate this, a comparison between the average
temperature in the memory cell and the maximum temperature
is plotted in Fig. 8 as a function of the absolute value of the
voltage drop across the memory cell.
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Figure 8. The maximum temperature inside the memory cell is plotted
together with the average temperature as a function of the absolute value
of the voltage across the memory cell.

The average temperature of the cell remains at moderate
temperatures and reaches a maximum value of 320K, which

agrees well with values reported in [27].
This finding is important as it emphasises that localised

Joule-heating does not significantly affect the average temper-
ature within the memory cell as long as the size of the hot spot
is negligible in comparison to the lateral dimensions. Also, the
highly localised hot spots prior to a filament formation provide
evidence that memory switching in carbon-based devices is
a temperature activated process which is in agreement with
reports from MD simulations [4], [28], [29]. Note that an
increase of the sp2 content would lead to a reduced distance
between the sp2 conducting clusters in the sp3 matrix. This in
turn would result in larger currents and higher temperatures
due to Joule heating being more effective. Once the lateral
dimensions of the device approach the filament dimensions,
it is suggested that the whole device can be re-amorphized
using a standard reset pulse, which would increase the cycling
endurance significantly [3].

V. CONCLUSION

We have successfully developed a simulation model that
uses randomly distributed sp2 and sp3-rich clusters to con-
stitute the material composition of ta-C memory devices. We
have shown that by carefully taking the temperature and field-
dependence of the sp3 conductive clusters into account we
are able to reproduce an experimentally obtained conductivity
ranging over ≈4 orders of magnitude, all the way from ohmic
conduction until dielectric breakdown. The simulation takes
the overall sp3 content into account and therefore reflects that
an increasing sp3 content will increase the resistivity and in
turn a higher voltage will be required to produce a sufficiently
high current density to induce dielectric breakdown.

As a result we have shown that Joule heating causes locally
very high temperatures that, in turn, trigger a temperature
activated process leading to material modifications. This tem-
perature dependence emphasises the importance of adequate
current control during the SET operation, so that sufficient
current passes through the device for memory switching to
occur and, at the same time, the current is limited to improve
the cycling endurance. For further endurance improvements
our findings suggest to decrease the gap between the elec-
trodes, which increases the temperature gradient within the
device during reverse switching. Future work aims to describe
the full cycling dynamics including dielectric breakdown and
reversible switching by implementing a cluster re-organisation
that is based on a rate equation approach.
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