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Raman spectroscopy is a fast and nondestructive means to characterize graphene samples. In particular, the
Raman spectra are strongly affected by doping. While the resulting change in position and width of the G peak
can be explained by the nonadiabatic Kohn anomaly at I', the significant doping dependence of the 2D peak
intensity has not been understood yet. Here we show that this is due to a combination of electron-phonon and
electron-electron scattering. Under full resonance, the photogenerated electron-hole pairs can scatter not just
with phonons but also with doping-induced electrons or holes, and this changes the intensity. We explain the
doping dependence and show how it can be used to determine the corresponding electron-phonon coupling.
This is higher than predicted by density-functional theory, as a consequence of renormalization by Coulomb

interactions.
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I. INTRODUCTION

Graphene is the latest carbon allotrope discovered and it
is now at the center of a significant research effort.'~® Near-
ballistic transport at room temperature and high mobility>~'°
make it a potential material for nanoelectronics,''~'* espe-
cially for high-frequency applications.'> Furthermore, its
transparency and mechanical properties are ideal for micro-
mechanical and nanomechanical systems, thin-film transis-
tors, transparent and conductive composites and electrodes,
and photonics.'6-20

Graphene layers can be readily identified in terms of num-
ber and orientation by inelastic and elastic light scattering
such as Raman®' and Rayleigh spectroscopies.’>?* Raman
spectroscopy also allows monitoring of doping, defects,
strain, disorder, chemical modifications, and edges.?!">*=38 In-
deed, Raman spectroscopy is a fast and nondestructive char-
acterization method for carbons.?® They show common fea-
tures in the 800—2000 cm™! region: the G and D peaks,
around 1580 and 1350 cm™!, respectively. The G peak cor-
responds to the E,, phonon at the Brillouin-zone center (I
point). The D peak is due to the breathing modes of six-atom
rings and requires a defect for its activation.’¥4%4! It comes
from TO phonons around the K point of the Brillouin
zone, 4! is active by double resonance (DR),*’ and is
strongly dispersive with excitation energy due to a Kohn
Anomaly at K.?’ The activation process for the D peak is
intervalley and is shown schematically in Fig. 1(d): (i) a
laser-induced excitation of an electron/hole pair; (i)
electron-phonon scattering with an exchanged momentum
q~K; (iii) defect scattering; (iv) electron-hole recombina-
tion. DR can also happen as intravalley process, i.e., con-
necting two points belonging to the same cone around K (or
K’), as shown in Fig. 1(b). This gives the so-called D’ peak,
which is at about 1620 cm™ in defected graphite, when
measured at 514 nm excitation.

The 2D peak is the second order of the D peak. This is a
single peak in single-layer graphene (SLG) whereas it splits
into four in bilayer graphene (BLG), reflecting the evolution

1098-0121/2009/80(16)/165413(10)

165413-1

PACS number(s): 78.30.—j, 73.50.Bk

of the band structure.”! The 2D’ peak is the second order of
the D' peak. Since both 2D and 2D’ originate from a process
where momentum conservation is satisfied by two phonons
with opposite wave vectors (q and —q), they do not require
the presence of defects for their activation and are thus al-
ways present. Indeed, high-quality graphene shows the G,
2D, and 2D’ peaks but not D and D’ 2! Also, under the
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FIG. 1. (Color online) Role of the electron dispersion (Dirac
cones, €= * v|p|, shown by solid black lines) in Raman scattering:
(a) intravalley one-phonon G peak, (b) defect-assisted intravalley
one-phonon D’ peak, (c) intravalley two-phonon 2D’ peak, (d)
defect-assisted intervalley one-phonon D peak, and (e) intervalley
two-phonon 2D peak. Vertical solid arrows represent interband tran-
sitions accompanied by photon absorption (upward arrows) or emis-
sion (downward arrows) (the photon wave vector is neglected).
Dashed arrows represent phonon emission. Horizontal dotted ar-
rows represent defect scattering.
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assumption of electron-hole symmetry, the two-phonon
peaks are fully resonant.*>*3 This means that energy and mo-
mentum conservation are satisfied in all elementary steps of
the Raman process, as shown schematically in Figs. 1(c) and
1(e). Then, all intermediate electronic states are real. As a
consequence, two-phonon Raman spectroscopy is sensitive
to the dynamics of the photoexcited electron-hole pair, in
particular, to the scattering processes it can undergo. This is
of crucial importance for the present work.

Doping in graphene is commonly observed in as-
deposited samples, due to the presence of charges at the sur-
face or interface.’** It can also be induced by applying a
voltage on an external gate electrode.?3>333¢ Substitutional
doping, either bulk or edge, is also possible,*>*¢ however,
thus far, these samples are far from ideal, and the effects of
doping and structural disorder overlap in their Raman
spectrum.® In the present work we will thus focus on the
variation in the Raman spectra observed in samples where
the Fermi level moves as a result of charged impurities or
applied voltages, or both, as reported in Refs. 24, 26, 32, 33,
and 36. The G peak position, Pos(G), increases and its full
width at half maximum, FWHM(G), decreases for both elec-
tron and hole doping. The G peak stiffening is due to the
nonadiabatic removal of the Kohn anomaly at I'.2%47 The
FWHM(G) sharpening is due to Pauli blocking of phonon
decay into electron-hole pairs, when the electron-hole gap is
higher than the phonon energy,?®*® and saturates for a Fermi
shift bigger than half phonon energy.?%364% A similar behav-
ior is observed for the LO-G~ peak in metallic nanotubes,*
for the same reasons. In the case of BLG, the different band
structure renormalizes the phonon response to doping differ-
ently from SLG.?3%3! Also in this case the Raman G peak
stiffens and sharpens for both electron and hole doping, as a
result of the nonadiabatic Kohn anomaly at I'.3* However,
since BLG has two conduction and valence subbands, with
splitting dependent on the interlayer coupling, this changes
the slope in the variation in Pos(G) with doping, allowing a
direct measurement of the interlayer coupling strength.?3'!

Another significant result is that in SLG the ratio of the
heights of the 2D and G peaks, I(2D)/1(G), and their areas,
A(2D)/A(G), is maximum for zero doping,'*? and de-
creases for increasing doping. On the other hand, this shows
little dependence on doping for BLG.?>3? Figure 2 plots the
combined data for SLG and BLG from Refs. 21, 32, 33, 52,
and 53. Note that Refs. 32 and 33 reported height ratios,
while here, as discussed later, we analyze the area ratio
A(2D)/A(G), which encompasses both trends of 1(2D)/I(G)
and FWHM(2D)/FWHM(G).

Due to residual disorder, the energy of the Dirac point can
fluctuate across the sample on a scale smaller than the laser
spot, which leads to spatial inhomogeneity of the doping
level.>*** We attribute the difference in the behavior of the
two SLG curves in Fig. 2 to a different degree of residual
charge inhomogeneity in the polymeric electrolyte experi-
ments of Refs. 32 and 33. On the other hand, the use of this
electrolyte enabled probing a very large doping range be-
cause the nanometer-thick Debye layer gives a much higher
gate capacitance compared to the usual 300 nm SiO, back
gate.?6323 Note as well that A(2D)/A(G) for the most in-
trinsic samples measured to date is about 12—17,21%33 much
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FIG. 2. Experimental A(2D)/A(G), measured for 514.5 nm ex-
citation, as a function of E for SLG (Refs. 21, 32, 33, and 52) and
BLG (Ref. 33). The BLG data (solid squares) are divided by ten, to
make comparison easier. Note that the doping-dependent SLG data
are a combination of two experiments on two different samples,
from Ref. 33 (half-filled circles) and Ref. 32 (open circles), and a
data-point representative of intrinsic graphene from Refs. 21, 52,
and 53 (solid star).

higher than the zero gating values in Refs. 32 and 33, as
shown in Fig. 2. This points again to sources of disorder in
the gated samples of Refs. 32 and 33, while the absence of a
significant D peak excludes large amounts of structural de-
fects. Finally, we stress that all data for varying E in Fig. 2
are measured on samples on Si covered by the same SiO,
thickness, thus the relative change in peaks’ intensities with
doping is not related to extrinsic interference effects.?>>*

Here, we show that the dependence on doping of the 2D
peak intensity results from its sensitivity to the scattering of
the photoexcited electron and hole. Assuming the dominant
sources of scattering to be phonon emission and electron-
electron collisions, we note that while the former is not sen-
sitive to doping, the latter is. Then, the 2D doping depen-
dence can be used to estimate the corresponding electron-
phonon coupling (EPC).
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II. DOPING DEPENDENCE OF TWO-PHONON RAMAN
INTENSITY

A. Theoretical dependence

Raman scattering™” is an electron-mediated process where
electromagnetic radiation exchanges vibrational quanta
(phonons) with a crystal. A complete description requires the
detailed knowledge of (i) electronic structure, (ii) phonon
dispersions, and (iii) mutual interactions between electrons
and phonons (i.e., electron-electron, electron-phonon, and
phonon-phonon scattering).

The Raman spectrum of graphene consists of a set of
distinct peaks. Each characterized by its position width,
height, and area. The frequency-integrated area under each
peak represents the probability of the whole process. It is
more robust with respect to various perturbations of the pho-
non states than width and height. Indeed, for an ideal case of
dispersionless undamped phonons with frequency wy, the
shape of the n-phonon peak is a Dirac ¢ distribution
«d(w-nwy,), with zero width, infinite height but well-
defined area. If the phonons decay (e.g, into other phonons,
due to anharmonicity, or into electron-hole pairs, due to
electron-phonon coupling), the & peak broadens into a
Lorentzian, but the area is preserved, as the total number of
phonon states cannot be changed by such perturbations. If
phonons have a weak dispersion, states with different mo-
menta contribute at slightly different frequencies. This may
result in an overall shift and a nontrivial peak shape but
frequency integration across the peak means counting all
phonon states, as in the dispersionless case. Thus, the peak
area is preserved, as long as the Raman matrix element itself
is not changed significantly by the perturbation. The latter
holds when the perturbation (phonon broadening or disper-
sion) is smaller than the typical energy scale determining the
matrix element. Converting this into a time scale using the
uncertainty principle we obtain that, if the Raman process is
faster than the phonon decay, the total number of photons
emitted within a given peak (i.e., integrated over frequency
across the peak), is not affected by phonon decay, although
their spectral distribution can be. Even if the graphene
phonons giving rise to the D and D’ peaks are dispersive due
to the Kohn anomalies at K and T',%’ their relative change
with respect to the average phonon energy is at most a few
percent, thus we are in the weakly dispersive case discussed
above. The phonon decay in graphene is in the picosecond
time scale, while the Raman process is faster, in the femto-
second time scale.?®%7 Then, we will analyze the area ratio,
A(2D)/A(G), which encompasses both variations in height
ratio, I(2D)/I(G), and width FWHM(2D)/FWHM(G).

We first consider the G peak. For the one-phonon process,
allowed by momentum conservation, which gives rise to the
G peak, the picture is entirely different from the two-phonon
case. As shown in Fig. 1(a), the process responsible for the G
peak is determined by virtual electrons and holes with energy
~E; /2, where E| is the laser excitation energy (for a typical
Raman measurement E;/2~1 eV). If the Fermi energy, Ep,
stays below E;/2, as in Refs. 32 and 33, these electronic
states are not strongly affected. Only the final phonon state is
influenced by doping, which manifests itself in a change in
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Pos(G) and FWHM(G).20323336 However, the area of the
peak is determined by the total spectral weight of the phonon
state, which is preserved. Thus, we do not expect any signifi-
cant dependence of A(G) on doping, as long as the doping is
not too strong, |Ef<1 eV. We can then take the measured
doping dependence of A(2D)/A(G) as representative of the
A(2D) trend. Note that A(G) can change as a function of
other external parameters such as the Raman excitation
energy.?!-38-38-60 However, for fixed excitation, such as in the
experiments discussed here, the above argument holds.

In Ref. 43 the following expressions for the 2D and 2D’
areas were obtained:

2\2,2 2
B —
c) c\vy
2\2,2 2
L A
c) c“\y

where e is the electron charge, ¢ is the speed of light,
e*/c~1/137 is the fine-structure constant, and vp 1S
the electron velocity (its experimental value is
vp=10° m/s=6.6 eV A (Refs. 61-63). 2 is the scattering
rate of the photoexcited electron and hole. Note that we de-
fine y as the imaginary part of the energy, so it determines
the decay of the amplitude, while the decay of the probability
is determined by 2v. This includes all sources of inelastic
scattering. Assuming the two main mechanisms for electron
scattering to be the emission of phonons and electron-
electron collisions, we write

Y= "Yepht Yees Yeph= VTt Yk- (2)

Here we include the phonons near I' and K, responsible for
D and D'. The corresponding emission rates, 2yr and 2y,
enter the numerators in Egs. (1a) and (1b).

Two points regarding Egs. (1a) and (1b) should be empha-
sized. First, the scattering rates depend on the electron en-
ergy, €, which is defined by half the laser energy, e=~E;/2
[see Eq. (9) in the next section]. Second, if impurity scatter-
ing is significant compared to other scattering mechanisms,
the corresponding elastic-scattering rate cannot be simply in-
cluded in y and Egs. (1a) and (1b). The whole Raman inten-
sity calculation should be done differently. Equations (la)
and (1b) thus neglect impurity scattering. For short-range
impurities this assumption is justified by the absence of a
large D peak in the spectra of Refs. 32 and 33. Long-range
disorder is efficiently screened (even though the vanishing
density of states at the Dirac point requires the screening to
be nonlinear®-%7); it is precisely this screening that gives rise
to the inhomogeneous concentration of electrons/holes and
spatial fluctuations of the Dirac-point energy.

In principle, there are no reasons for a strong dependence
of ¥pn on carrier density. However, v,. does exhibit such a
dependence. Indeed, in undoped graphene at low tempera-
tures, the photoexcited electron finds itself in a state with
some momentum, p, measured from the Dirac point, in the
empty conduction band. To scatter into a state with a differ-
ent momentum p’, it has to give away some energy and
momentum to another electron in the full valence band. This
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second electron would have to be promoted to the conduc-
tion band (as there are no available empty states in the va-
lence band) into a state with momentum p,, leaving a hole in
the valence band with momentum p,,. Momentum and energy
conservation require

P=p +P.+Ps (3a)

e(p) = e(p’) + e(p,) + €(py), (3b)

where e(p) is the quasiparticle dispersion, assumed the same
for electrons and holes. For Dirac particles e(p)=vg|p|, so
the only possibility to satisfy both conservation laws is to
have all four momenta parallel. If the spectrum is convex,
d*e(p)/dp*> 0, the two equations can be satisfied by a set of
momenta with nonzero measure, i.e., the phase space is fi-
nite. If it is concave, d’e(p)/dp® <0, they are incompatible.
In SLG the spectrum is Dirac to a first approximation, result-
ing in an uncertainty.®® This can be resolved by taking into
account corrections from electron-electron interactions,
which make the spectrum concave®-’? and the interband pro-
cess forbidden.

As new carriers are added to the system, intraband
electron-electron collisions become allowed. The momentum
and energy conservation become

p+p.=p’ +p,, (4a)

e(p) + e(p.) = e(p’) + €(p,), (4b)

which can be satisfied for any quasiparticle dispersion. These
collisions give a contribution to v, which increases with
carrier concentration. As a consequence, the total y in Eq.
(1a) increases, leading to an overall decrease in A(2D), con-
sistent with the experimental trend in Fig. 2.

The above arguments essentially use the nonconvexity of
the electronic spectrum in the conduction band, and thus ap-
ply to SLG only. In BLG the spectrum is parabolic near the
Dirac point, so that d*e/dp?>>0, and the phase-space restric-
tions are absent. Thus, electron-electron collisions are al-
lowed even at zero doping and the collision rate has a much
weaker dependence on Ef, which, in first approximation, can
be neglected. Thus, A(2D) is expected to have a weak de-
pendence on Ef, as seen in Fig. 2, where the experimental
A(2D)/A(G) for BLG shows a negligible variation with
doping.®

To quantify the doping effects on the SLG A(2D), we first
calculate the electron-electron scattering rate, 27,., in the
random-phase approximation, analogously to Refs. 71 and
72. v, is given by the imaginary part of the on-shell elec-
tronic self-energy, Im 3,,,(p, €) for e—>vyp—07, with € and p
counted from the Dirac point.®® Here we consider the limit-
ing case, when the energy of the photoexcited electron
(e=E;/2) far exceeds Ep. The carrier concentration is
n=E;/(mv7). In this case, the collisions are dominated by
small momentum transfers, |p—p’| ~|Eg|/vg, S0 .. does not
depend on € and is proportional to |Eg|, the proportionality
coefficient depending only on the dimensionless Coulomb
coupling constant r,=e?/(svy) (e being the dielectric con-
stant),
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FIG. 3. Numerical values of the function f(r,), appearing in Eq.
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The explicit form of the function f is given in the Appendix.
Figure 3 plots its numerical values for r,<2.2, correspond-
ing to e>1.
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FIG. 4. Fit of the experimental dependence VA(G)/A(2D) from
Ref. 32 (open circles), Ref. 33 (half-filled circles), and the data for

intrinsic graphene (Refs. 21, 52, and 53) (star) using Eq. (8) (dashed
and solid lines, respectively).
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Thus, we expect A(2D) to change with E as

C
[ye—ph + |EF|f(62/SUF)]2

with C a constant. Note that a variation in the dielectric
constant & will affect A(2D). Given the negligible depen-
dence of A(G) on doping, Eq. (6) can be rewritten as

AG
A((ZD)) = C'[Yepn+ |Elf(e’/evp)], (7)

where C’ is another constant.

A(2D) = (6)

B. Fit to experiments

Figure 4 plots VA(G)/A(2D) as a function of Ej. This
dependence, according to Eq. (7), should correspond to two
symmetric straight lines joining at Er=0. As noted in Sec. I,
close to Ep=0 the data from the two polymer electrolyte
gating experiments do not converge to the same value. How-
ever, for both a linear rise of VA(G)/A(2D) is seen at higher
energies. Also, while the data represented by open circles in
Fig. 4 are almost symmetric, a significant asymmetry is seen
for electron doping in the set represented by the half-filled
circles, but the two sets are in good agreement for hole dop-
ing.

A(2D)/A(G) for intrinsic samples measured at 514.5 nm
excitation, the same as in Refs. 32 and 33, is in the range
12-17,2152 represented by the star in Fig. 2 at 14.5, corre-
sponding to VA(G)/A(2D)=0.26 at Er=0. This is in good
agreement with the ratio measured for carbon whiskers.”?
These show a 2D peak very similar to graphene, being com-
posed of misoriented graphene layers.’*7> However, their
Raman spectra are much less susceptible to charged impuri-
ties or surface doping, being bulk materials.”> We also need
to consider the dielectric constant of the polymer electrolyte
used in the experiment of Ref. 32, =5, giving f(e?/evy)
=~().06. Thus, we fit the data with a one-parameter expression

[A(G) 0.6
AoD) y—('ye_ph +0.06| 7). (8)

e-ph

We fit separately each branch of the two data sets, as shown
by solid and dotted lines in Fig. 4. As a result, we obtain
Yepn=18,21,29,65 meV, with an average y, ;=33 meV."™

III. RAMAN INTENSITIES AND ELECTRON-PHONON
COUPLING

A. Theoretical background and electron-phonon coupling
definitions

Even though graphite and other sp-hybridized materials
have been investigated for more than 60 years,*"’> all the
fundamental physical properties needed for the interpretation
of the Raman spectra have undergone an intense debate,
which seems to be just beginning to converge. Interestingly,
several features of both phonon dispersions and band struc-
ture of graphene are determined by the EPC. For example, in
the Kohn anomalies around I'" or K (Ref. 27) the correction
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to the phonon frequencies due to EPC results in a linear
slope of the optical phonon branches as the wave vector ap-
proaches I' or K. The EPC and phonon-dispersions calcula-
tions of Ref. 27 have been confirmed at the I" point by in-
elastic x-ray scattering’® and by the measurement of
FWHM(G) in graphite, graphene, and nanotubes,?!-264877
once anharmonic effects are taken into account.?!:26 For
the K point, the precise slope of the anomaly is still
debated.’”787 Another EPC effect is the kink in the electron
dispersion, about 200 meV below Er, seen by angle-resolved
photoemission spectroscopy (ARPES).%389 This is attributed
to a correction to the electron energy due to EPC,%38081 4]
though alternative explanations also exist.3> Thus, a correct
EPC determination is a fundamental step for an accurate de-
scription of the physical properties of graphene and nano-
tubes, these being rolled up graphene sheets.

To link the 2D intensity to the EPC we first consider the
rate of phonon emission by the photoexcited electron/hole,
2%..pn- This is obtained from the imaginary part of the elec-
tron self-energy, ¥e.pn=Im 2 (€). For E; /2> Ep+wr, as in
the case of the Raman measurements at 2.41 eV excitation of
Refs. 32 and 33, we have®

VTN R N
YK—4260K,7’F—42‘UF-
Then, from Eq. (2)
A E A E
=5 w4 2B ). o)

The dimensionless coupling constants A, Ag correspond to
phonons close to I" and K, respectively, and determine their
rate of emission. We define them as

2
_ FF,KAu.cA
ZMLOF’KUIZ:

Here  wg=1210 cm™'=0.150 eV (Ref. 79)  and
wr=1580 cm™'=0.196 eV, ! M=2.00x10"2 g=2.88
X 10% (eV A?)! is the mass of the carbon atom and A,
~5.24 A?is the unit-cell area. F- and Fy have the dimen-
sionality of a force and are the proportionality coefficients
between the change in effective Hamiltonian and the lattice
displacement along the corresponding phonon mode. Strictly
speaking, the relevant phonon states are not exactly at I' and
K, as shown in Fig. 1. However, the corresponding devia-
tion, g~ E; /v, is small compared to the K—K’ distance and
is neglected. All observables depend on the dimensionless
EPCs, A and Ag.

Equation (11) follows the notation of Ref. 43. Since dif-
ferent EPC definitions are used in the literature, it is quite
useful to give here matching rules for all of them, which will
be necessary when comparing the EPC values obtained here
with previous (and future) reports. The EPCs can be conve-
niently matched by either relating them to the nearest-
neighbor tight-binding model, where they are expressed in
terms of a single parameter, df,/da, the derivative of the
nearest-neighbor electronic matrix element with respect to
the interatomic distance, or by comparing expressions for
various observables. For example, doping leads to a G peak

(11)

Arx
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shift due to EPC. This is expressed in terms of E ag?0-36:4783

\ 2E, —
5wr=—r<|EF|+ﬂ1nF—wr>. (12)

2m 4 2Ep+or

The corrections to the phonon dispersions as function of
wave vector q, measured from I' or K, are?’4377

ANr 55—
Swr_1o= Erwvlzpqz - w%, (13a)
A\t wp
dor_r0=—" TH55—> (13b)
8 \uig’ - of
ANk T35 3
Swy = f\rvéqz - wg. (13c¢)

Note that the E,, mode splits into longitudinal (I'~LO) and
transverse (I'=TO) at finite g. Note also that due to analyti-
cal properties of the logarithm and the square root, Eq. (12)
at |Ep|<owr/2 and Egs. (13a)-(13c) at vpg<wgr acquire
imaginary parts, which correspond to the phonon decaying
into a continuum of electron-hole pairs.*® In this case
2 Im dw gives the FWHM of the corresponding Lorentzian
profile. At vrg> wg - Eqs. (13a) and (13c) give the profile of
the Kohn anomalies.

In Refs. 26, 27, 78, and 84 the EPCs are defined as the
matrix elements of the Kohn-Sham potential, differentiated
with respect to the phonon displacements. What enters the
observables are their squares, averaged over the Fermi sur-
face in the limit Er— 0. The matching rule is then

F% — 4<D%>;Refs 26 and 78) — 8M(x)r<g%—~>§:Refs' 27 and 84)’

(14a)

F%( — 2<D%(>§:Refs. 26 and 78) — 4MwK<g%<>§:Refs. 27 and 84).

(14b)

In Refs. 36 and 83 the dimensionless coupling constant \ is
defined as the proportionality coefficient in Eq. (12). Thus,

) (Refs. 36 and 83) _ Ar (15)

27

Note that the expression linking EPC to FWHM(G) in Ref.
36 underestimates FWHM(G) by a factor 2, and should not
be used.

The dimensionless EPCs reported in the ARPES analysis
of Refs. 63, 80, 85, and 86 and in the scanning tunneling
spectroscopy (STS) experiment of Ref. 87 were measured
from the ratio of the electronic velocities below and above
the kink in the electron dispersion. This ratio is determined
by the derivative of the real part of the electronic self-energy
Re 3 ;,(€) due to the EPC. The latter can be calculated if
one takes the Dirac spectrum for electrons and a constant
dispersion for phonons. For Ez>0 one has®
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Ak Ey
S.n(e)=——(e In
eph( ) 477( wK) |E— a)K—EF|
S S Eyle+ wx— Efl
A E
- — (€= wr)ln ad
|€_‘UF_EF|
Ar Eyle+ or — Ef
_ET(E-'- ol (e+ wr)? (16)

Here E,; is the ultraviolet cutoff, on the order of the elec-

tronic bandwidth. We then get the matching rule

d Re Ee—gh
de

A (ink) — _

e=Ep

)\K<EF—‘UK Ey )
=— +1In
27T

[0)78 wK+EF
Ar(Ep—w
+_F< F r

E
+In—2 )
2 wr or+Ep

(17)

However, we note that Mg is subject to Coulomb
renormalizations.3® This implies that Ay depends on the elec-
tronic energy scale, such as the electron energy e, the Fermi
energy Ep, or the temperature 7, whichever is larger,
Ax=Ag(max{|€|,|Ep|,T}). This dependence is shown in
Fig. 6 of Ref. 88. In a Raman measurement this scale is
given by the energy of the photoexcited electron, e=E;/2,
as long as E;/2>>|Eg|. Thus, in Eq. (10) Ag=Ag(E;/2). On
the other hand, to estimate the EPC effects on the phonon
dispersions in intrinsic graphene, the relevant electron energy
is on the order of the phonon energy. Thus, in Eq. (13c¢)
Nk~ Ag(wg). From Fig. 6 of Ref. 88 we estimate that
Ne(wg)/INg(E;/2)=1.5 for e=1 and 1.2 for £=5 (taking
E;=2 eV to represent Raman measurements in the visible
range).

The situation with Eq. (17) is more complicated since the
cutoff E,, appears explicitly. The logarithmic term is deter-
mined by all energy scales from E,; down to Er+ wg. Thus,
the proper expression is

)\(kink)_)\K(EF) EF_(UK+JEM )\K(e)d_e
2m wg Eptwy 2T €
A Ep— E
—F< o S ) (18)
2w\ wr Ep+ wr

B. Experimental electron-phonon coupling

From Eq. (12), our overall average y.,,=33 meV, de-
rived from a fit to all the data in Fig. 4, gives

Ar+ A = 0.13. (19)

We also note that the hole doping side of Fig. 4 shows two
data sets very consistent with each other. We can thus get
another estimate taken from the average y.,,~20 meV for
just the hole doping side. This would give
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Ar+ Mg = 0.08. (20)
Based on measurements’®3® and density-functional theory
(DFT) calculations,?” the value of A can be reliably taken
~0.03. Indeed, DFT gives’ (g7)»=0.0405 eV?> and
vp=5.5 eV A, corresponding, from Egs. (11) and (14a) to
Ar=0.028. Even though (gf-)r and vy are subject to Cou-
lomb renormalization, Ap=4A, .{gf)r/vF, which contains
their ratio, is not.®® The experimental A\ extracted from
FWHM(G) in graphene and graphite?’*® according to Eq.
(13a) and from the dependence of Pos(G) on Fermi energy
according to Eq. (12), are Ar=~0.034 (Ref. 36) and
Ar=0.027.26

On the other hand, the value of \ is still debated.”3488
The calculated DFT {(gg);=0.0994 eV, together with the
DFT vz=55 eV-A (both taken from Ref. 27) gives
Ag=0.034. However, Ref. 88 suggested this should be en-
hanced by Coulomb renormalization by up to a factor 3,
depending on the background dielectric constant. In order to
compare with our fits, we need consider that the corrections
to the phonon dispersion are determined by electronic states
with energies lower than those contributing to the Raman
signal. As discussed in Sec. III A, Ng(wg)/Ng(E /2)=1.2
for e=5. Our fit in Eq. (19) corresponds to Ag(E;/2)=0.1
while Eq. (20) gives Mg(E;/2)=0.05, resulting in
Me(wg) =0.12 and Ag(wg)=0.06, respectively. These are
bigger than DFT by a factor of about 3.5 and 1.7, respec-
tively.

A recent GW calculation gave (Dy)p=193 eV?/A278
Combining this with the GW value v;=6.6 eV A% we get
Mx(wg)=0.054, a factor ~1.6 greater than DFT, in good
agreement with our fitted average on the hole side.

Ref. 79 reported inelastic x-ray scattering measurements
of the phonon dispersions near K more detailed than those
originally done in Ref. 76, now giving a phonon slope at K
of 73 meV A. Using Eq. (13¢) at ¢> wy/v and taking the
experimental value v;=6.6 eV A (Ref. 63) (the bare elec-
tron velocity, i.e., below the phonon kink), we obtain
Mx(wg)=0.044, a factor ~1.3 higher than DFT, again in
good agreement with our fitted average on the hole side.

Another EPC estimate can be derived from the 2D and
2D’ area ratio. Combining Egs. (1a), (1b), (9), and (10) we
get

&D)_2<)\_K)2' (21)

A2D")  “\\p

For intrinsic SLG and graphite whiskers, the experimental
ratio A(2D)/A(2D’) is about 25-30,>'°%3 which gives
Ng(E;/2)=0.11 and Ap+Ng(E;/2)==0.13. Since in this case
e=1, we obtain Ag(wg) =0.16, 4.5 times higher than DFT, in
agreement with our upper estimate from Eq. (19).

We finally consider the EPC derived from ARPES and
STS. For an estimate, we approximate the dependence Ag(e)
as linear in In e. We take Ag(E);)=(wr/ wg)\r, as given by
DFT (assumed to be valid at high energies), and leave
Mx(E./2=1 €V) as the only free parameter determining this
linear dependence,
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In(E,,/€)
In[E,,/(E;/2)]
(22)

wr wr
Agl(e) = w—?\r - L—Kr - Nk(EL/2)
K K

Taking Ep=0.4 eV 53803687 £ =10 eV, and substituting
Eq. (22) in Eq. (18), we get

AR = 0.7\ + 0.6M(E/2). (23)

Note that the dependence on the precise value of E;; is weak;
setting E;;=5 eV changes the first coefficient to 0.5 and the
second (more important as it multiplies the larger coupling
constant) varies only by 2%. The measurements in Refs. 63,
80, and 85-87gave \*"=0.4,0.3,0.26,0.2,0.14, respec-
tively. The smallest of these values, AX"0~0.14, from Eq.
(23) corresponds to A\p+A\g(E;/2) = 0.23 while the highest to
Ar+Ag(E;/2)=0.66. Even the smallest is almost twice our
upper bound fit of Eq. (19) and would imply an EPC renor-
malization of almost 1 order of magnitude. Resolution ef-
fects could play a role in this overestimation.3*

Thus, our fits to the doping-dependent Raman area ratios
point to a significant renormalization, by a factor 1.7-3.5, of
the EPC for the TO mode close to K, responsible for the
Raman D and 2D peaks. Our lower bound estimate is con-
sistent with recent GW calculations and phonon measure-
ments, but our upper bound is much lower than the smallest
estimate derived by ARPES, pointing to a problem in the
way ARPES-based works have thus far extracted EPC from
their experimental data.

IV. CONCLUSIONS

We have shown that the 2D intensity dependence on dop-
ing can be explained considering the influence of electron-
electron interactions on the total scattering rate of the photo-
generated electrons (holes). We have given a simple formula
linking 2D peak area to the Fermi-level shift. Fitting this to
the available experimental data we got an estimate for the
EPC value of the TO phonons close to K, responsible for the
Raman D and 2D peaks. This is larger than that from DFT
calculations, due to renormalization by Coulomb interac-
tions. However, our fitted EPC is still significantly smaller
than those reported in ARPES or STS experiments.
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APPENDIX: THE FUNCTION f{(r,)

The function f(r,), appearing in Eq. (5), can be repre-
sented as
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2 /2 2/(1+cos ¢)
rg)=— do X
f wfo ¢ Jo [2(x/r, + 4)x sin @]* + Rf

dx x*sin @R,

f 2/(1=cos ¢) dx x*sin @R,

+ .

2/(1+cos ¢) [Z(X/rs + 4))6 sm ¢ — R3]2 + R%(X, (P)
(A1)

where R, R,, and R; are given by

+b
R,(x,¢)=a,b, —a_b_—x* 2

, A2
a_+b_ (A22)
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a,+b
RZ(-x’ (P) = a+b+ - 'x2 lng ’ (Azb)
X
Ry(x,@) =a_\x*—a* - x* arccos&, (A2c)
X
a-=2*xcos @, bs=\a’-x> (A2d)

Figure 3 plots f(r,), calculated numerically.
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