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DENSITY FUNCTIONAL THEORY CALCULATIONS

Calculations are performed within the framework of density functional theory (DFT) in

the local density approximation[1, 2]. The wavefunctions are expanded in a plane-wave

basis set with a kinetic energy cutoff of 60Ry[3]. The core-valence interaction is taken into

account by using norm-conserving pseudopotentials[4, 5]. We use a 20× 20× 1 Monkhorst-

Pack[6] sampling of the Brillouin-zone (BZ) for structural relaxations. Energy differences

are converged within 5meV/atom. The relaxed lattice parameter is 2.50Å, with a C-C bond

length of 1.51Å (similar to the C-C bond length we calculate for diamond, 1.52Å) and a C-H

bond length of 1.11Å, in good agreement with previous studies[7, 8]. We use a supercell

configuration, with periodic replicas separated by 10Å vacuum in order to minimize interlayer

interaction. Phonon modes and EPCs are calculated within density functional perturbation

theory (DFPT), as described in Ref.[9]. Phonon frequencies are converged within 2cm−1.

The fractional occupations are described by first-order Hermite-Gaussian smearing[10]

and p-doping is simulated using the rigid-band approximation[11]. In this approximation

the total valence electrons per carbon atom (ZC+ZH=4+1=5e) are replaced by (5 − x)e

where x is the p-doping concentration (in %). Thus, e.g., 1% p-doping corresponds to one

B every 100 C, and the total valence electrons per carbon atom are 4.99 e. Figure S1(a)

plots the band structures of p-doped graphane within the rigid-band model, compared to a

supercell model with substitutional B, Fig. S1(b) plots the corresponding EDOS, and Fig.

S1(c,d) the atom-projected EDOS. We use a 2×2 supercell with one B atom, corresponding

to 12.5% p-doping (see Fig. S1(e)). In both cases, the doping has the effect of lowering

EF below the top of the valence band, and does not introduce localized states in the band

gap. As a result, a small multi-sheet Fermi surface with diameter 2kF (see Fig. S1(a))

emerges around the BZ center. The dispersions close to EF are essentially identical in the
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FIG. S1: (a)Band structure of pristine (solid dark lines, rigid band model) and 12.5% p-doped

graphane (dashed red lines, 2 × 2 supercell with B). The top of the valence bands is set to zero,

and EF =-0.96eV (horizontal green line). The arrows indicate the average Fermi surface diameter.

(b)EDOS of pristine (solid dark lines) and 12.5% B-doped graphane (dashed red lines). The

dispersion close to EF is similar for the supercell and rigid-band models. We expect this to hold

also at lower doping, where the perturbation to the pristine dispersion is smaller. (c)Atom-projected

EDOS of pristine graphane. (d)Atom-projected EDOS of 12.5% B-doped graphane. The structure

between -2 eV and -4eV in the valence band of pristine graphane is mostly due to the nondispersive

H1s states at -2.5eV around Γ. Upon doping these are stabilized to ∼-4eV by the B atoms positive

charge. Other changes in the EDOS reflect the opening of gaps at K, associated with the periodic

doping model adopted. (e)Ball-and-stick representations of a 2 × 2 graphane supercell with one

substitutional B (top and side view). C atoms are grey, H white, B red.
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Doping EF Smearing k-mesh EDOS ∆ω λ ωlog Tc

eV meV st./eV/cell meV cm−1 K

1% -0.08 50 300 × 300 × 1 0.21 58 1.237 708 84.3

2% -0.18 70 200 × 200 × 1 0.21 58 1.263 697 85.3

3% -0.31 120 120 × 120 × 1 0.22 59 1.314 676 87.0

4% -0.38 140 100 × 100 × 1 0.22 59 1.353 660 87.9

5% -0.47 190 80 × 80 × 1 0.23 59 1.400 645 89.4

6% -0.55 220 80 × 80 × 1 0.24 60 1.422 639 90.2

7% -0.58 240 60 × 60 × 1 0.24 60 1.430 637 90.5

8% -0.73 270 50 × 50 × 1 0.25 61 1.436 634 90.5

9% -0.81 270 50 × 50 × 1 0.26 62 1.446 633 91.0

10% -0.90 270 50 × 50 × 1 0.26 64 1.449 632 91.1

TABLE S1: Calculated EF , EDOS at the Fermi level, phonon softening ∆ω, λ, logarithmic phonon

frequency ωlog and Tc as a function of p-doping.

the rigid-band and supercell models. The corresponding EDOS at 12.5% p-doping are 0.26

states/eV/cell in rigid-band and 0.27 states/eV/cell in supercell. We expect this similarity

to hold also for lower doping, where the perturbation to the pristine dispersions is smaller.

The similarity between these two models justifies our use of the rigid-band approximation

to simulate substitutional doping. On the other-hand, this is the most appropriate way to

account for charge transfer or gate-induced doping.

Since doping leads to a small Fermi surface centered at Γ, (Fig. S1(a)), the zone-center

phonons are the most sensitive to the metallic character of doped graphane. Accordingly,

we carefully checked the convergence of the phonons at Γ with respect to the smearing

parameter and BZ sampling at each doping level (Table S1).

Figure 1 in the main text also reports the EDOS of other 2d and 3d systems. To model

bulk diamond we use a 16 × 16 × 16 Monkhorst-Pack[6] mesh for BZ sampling and 1 ×

1 × 16 for a diamond nanowire with diameter ∼0.94nm. The relaxed C-C bond lengths are

1.52Å for diamond and ∼1.52Å (average) for the nanowire. The EDOS are calculated using

the tetrahedron method[12] for BZ integration, and they are proportional to E−1/2 in the

nonowire (overlapped by van Hove singularities), a step-like function in graphane, and E1/2
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in bulk diamond, as expected for generic EDOS in systems with reduced dimensionality[13].

The step-like shape in graphane implies that the EDOS is large even at low doping.

The fundamental mechanism responsible for high-Tc in copper oxides is still debated[14–

16]. Yet it is generally accepted that Coulomb exchange and correlation effects play an

important role[15, 16]. However, in conventional superconductors the pairing is known to

be driven by the interaction between electrons and lattice vibrations[17–26] and can be

understood in the framework of the conventional BCS theory. We thus study the supercon-

ductivity of doped graphane within the isotropic approximation to the Midgal-Elashberg

theory[27]. We calculate Tc using the modified McMillan equation[28] and a Coulomb pa-

rameter µ⋆ = 0.13 (a typical value of the Coulomb repulsion between electrons[27, 28]).

Other possible choices for the Coulomb parameter do not affect our conclusions. λ and the

logarithmic phonon frequencies ωlog are calculated by BZ sampling on a uniform unshifted

100 × 100 × 1 grid. We extensively checked the convergence of λ and ωlog with respect to

BZ sampling by comparing two calculations, one including Γ and another excluding it, since

EPC at Γ is an integrable singularity and the total EPC depends on the BZ integration ac-

curacy. The estimated errors arising from this singularity for a phonon grid of 100×100×1

are ±0.006 for λ, ±0.7cm−1 for ωlog and ±0.6K for Tc.

The possibility of superconductivity in alkali-doped graphene was also recently

suggested[29], based on a pairing mechanism associated with an extended van Hove sin-

gularity. In hole-doped graphane, unlike alkali-doped graphene[29], EF is located far from

any van Hove singularity (see Fig. S1). Thus, the instability of Ref. 29, corresponding to

an effective e-e coupling an order of magnitude smaller than the EPC here, is expected not

to alter our conclusions.

PHONON DISPERSIONS

Figure S2(a) plots the phonon dispersions corresponding to the two C-H stretching modes

(see Figs. S2(b,c)). These modes could be used to fingerprint graphane via IR absorption

or UV Raman spectroscopy[30–32]. The C-H stretching branches are essentially unaffected

by p-doping. This is consistent with the fact that the electronic states associated with the

C-H bonds have negligible weight at EF .

Figures S3(a,b) show the calculated phonon dispersions for 1% and 4% p-doped graphane.
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FIG. S2: (a)Dispersion of the two C-H stretching modes for pristine (solid dark lines), 1% (dashed

blue lines) and 4% p-doped graphane (dashed pink lines). (b)Ball-and-stick representations of the

C-H stretching motions with H atoms in phase, and (c) out of phase. The arrows indicate the H

motions (C in grey, H in white)

The widths of the Kohn anomalies at Γ match the average diameter, 2kF, of the hole Fermi

surface at each doping level, Fig. S1(a). We note that at 4% the softening is accompanied

by an hybridization of the branches leading to a level anticrossing around 2kF. Figure S4

plots the displacement patterns of the optical phonon modes at each doping level. The two

degenerate TO modes having planar C-C stretching and H atoms moving in-phase with

the C atoms downshift from 1185 to 715cm−1 (147 to 89meV) for 1% doping. The phonon

softening of the TO C-C stretching modes (∼58meV or ∼470cm−1 at 1% doping, see Table

S1) is significantly larger than in other materials, as typical Kohn anomalies range from

∼5meV (graphite and graphene)[33] to ∼10meV (TaC[26]). This is due to the large EPC of

the C-C bond-stretching vibration, which significantly affects the sp3-like electronic states

at the EF . For the same doping, the two degenerate zone-centre modes having in-plane C-C

stretching and H atoms moving out-of-phase with respect to the C atoms downshift from
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FIG. S3: (a)Phonon dispersion of pristine (solid black line), 1% (dashed blue lines) and 4% p-

doped graphane (dashed pink lines). (b)Optical modes around the zone centre, showing the Kohn

anomalies. Taking B explicitly into account[24], or with non-adiabatic corrections[25], may slightly

revise the softening. Nevertheless, such a large softening stands out as a qualitative effect.
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FIG. S4: Ball-and-stick representations of the optical phonon modes at Γ for (left) pristine

graphane, (centre) 1% doping, (right) 4% doping. The gold (blue) arrows indicate the carbon

(hydrogen) motions. Carbon atoms are shown in grey, hydrogens in white.
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1348 to 1257cm−1 (167 to 156meV). The LO mode with out-of-plane C-C stretching does not

couple to the electrons, due to the different parity of potential and wavefunctions, resulting

into a vanishing EPC. The two degenerate optical modes corresponding to the shear motion

of the C and H planes (at ∼1133cm−1) and the C-H stretching modes (see Fig.S2) do not

undergo softening upon doping. This is consistent with the electronic states associated with

the C-H bonds having little weight at EF , hence a small EPC.

METAL-TO-INSULATOR TRANSITION

In order to estimate the critical B doping, nc, corresponding to the Mott metal-to-

insulator transition (MIT) we use the following argument. In 3d the MIT occurs when

the impurity wavefunctions are close enough that their overlap is significant[34]. For many

materials aHn1/3
c ∼ 0.26, aH being the radius of the ground-state wavefunction of an hy-

drogenic donor[34]. The radius can be calculated as aH = ǫa0/m
⋆, a0 being the Bohr

radius, ǫ the dielectric constant, and m⋆ the effective mass[34]. In diamond aH ∼ 4Å and

nc ∼ 4 · 1020cm−3[34], therefore the average separation between nearest neighbor B atoms is

∼ 15Å. For graphane we use a similar criterion, replacing the 3d hydrogenic impurity with a

2d one. The ground-state hydrogenic wavefunction in 2d has radius a2d
H = ǫa0/2m⋆[35].

Using dielectric constant and hole effective mass of diamond (ǫ = 5.7; m⋆ = 0.74):

a2d
H = aH/2 ∼ 2Å. Thus, the average separation between nearest neighbor B atoms at

MIT is ∼ 7.5Å and the corresponding doping is estimated as 5% B (1 B every 20 C) or

2 · 1014 holes·cm−2.
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