
Supplementary Figures
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Supplementary Figure 1 | Optical images of the t(m+n)LG samples. (a) t(1+2)LG, (b)

t(2+2)LG, (c) t(1+3)LG, and (d) t(2+3)LG. The numbers mark the number of layers in each

region of the sample.
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Supplementary Figure 2 | Raman spectroscopy of t(m+n)LGs excited out-of-resonance and

in-resonance. The laser energy of out-of-resonance is 1.96 eV. The in-resonance energy of each

t(m+n)LG are shown in the figure. No shear modes are observed for the t(1+2)LG, t(2+2)LG and

t(2+3)LG at 1.96 eV (dashed lines). In contrast, the modes are clearly visible in the spectra

measured within the resonant energy window (solid lines).
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Supplementary Figure 3 | JDOSOAT of t(1+1)LG. (a) The band structure of (1,9) t(1+1)LG.

Typical optically allowed transitions between the conduction and valence bands are shown with

dashed arrows. The transitions between parallel bands connected by solid lines with solid crossed

arrows are optically forbidden. (b) The corresponding the electronic joint density of states

(JDOS) of all the optically allowed transitions (JDOSOAT ) of the band structure of (1,9) t(1+1)LG

in (a).
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Supplementary Figure 4 | JDOSOAT of t(1+3)LG. The six VHSs (at 1.81 eV, 1.90 eV, 1.95 eV,

1.99 eV, 2.10 eV and 2.36 eV) in the electronic joint density of states (JDOS) of all the optically

allowed transitions (JDOSOAT ) are marked by arrows.
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Supplementary Note 1

Linear Chain Model for twisted multilayer graphene

First, we consider a linear monatomic chain model for NLG. The equation of motion of this one-

dimensional system can be written as1:

mÜ1 = −α0U1 + α0U2

mÜ2 = α0U1 − 2α0U2 + α0U3

...

mÜN−1 = α0UN−2 − 2α0UN−1 + α0UN

mÜN = α0UN−1 − α0UN

, (1)

where m is the mass of carbon atom layer, α0 is the force constant between two layers, and Un is

the shear displacement of the nth layer. The solution of the above equations of motion is obtained

using the following substitution:

Un = un × e−iωt, (2)

Here, un is the amplitude of displacement, and ω is the vibration frequency. After the substitution,

the following equations are obtained:

mω2u1 = −α0u1 + α0u2

mω2u2 = α0u1 − 2α0u2 + α0u3

...

mω2uN−1 = α0uN−2 − 2α0uN−1 + α0uN

mω2uN = α0uN−1 − α0uN

, (3)

This can be expressed in a matrix form as:

mω2u = Du, (4)

This equation is equivalent to:

2π2c2µω2u = Du, (5)

where µ=7.6×10−27 kgÅ−2 is the monolayer mass per unit area, c = 3.0 × 1010 cm s−1 is the speed

of light, u is the column vector of displacement, and D is the tridiagonal shear part of the force
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constant matrix. For example, the force constant matrix D for 5LG can be written as:

D =



−α0 α0 0 0 0

α0 −2α0 α0 0 0

0 α0 −2α0 α0 0

0 0 α0 −2α0 α0

0 0 0 α0 −α0


, (6)

There are N-1 non-zero frequencies ωi and eigenvectors ui that solve the equation. For each ωi,

we can get the Eq (1) in the main text:

ω2
i ui =

1
2π2c2µ

Dui, (7)

For twisted multilayer graphene, for example t(2+3)LG, we denote the interlayer shear force con-

stant between the graphene layers at the twisted interface αt. We also assume that the presence of

the interface perturbs the force constant α0t between the two layers adjacent to the interface. Then,

the force constant matrix D for t(2+3)LG can be written as:

D =



−α0t α0t 0 0 0

α0t −αt − α0t αt 0 0

0 αt −αt − α0t α0t 0

0 0 α0t −α0 − α0t α0

0 0 0 α0 −α0


, (8)
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