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Optical Trapping Theory of Graphene

To calculate the radiation force[1] and torque[2] we use the full scattering
theory in the transition matrix (T-matrix) approach[3]. This is quite general
as it applies to particles of any shape and refractive index, and for wavelength.
The starting point is the calculation of the �eld con�guration in the focal
region of a high NA objective lens in absence of any particle[4]. The resulting
�eld is considered as the �eld incident on the particles, and the radiation
force and torque exerted on any particle within the region is calculated using
linear and angular momentum conservation for the combined system of �eld
and particles[5]. We adopt the geometry sketched in Fig.S1. The coordinate
systems Oxyz is linked to the laboratory and O′x′y′z′ to the local frame of
reference with origin in the center of mass of the �ake. The z′ and y′ axes
are parallel to the long and short edge of the rectangular model �ake. The
incident wave is a x-polarized gaussian beam focalized through a NA=1.3
objective (as in our experiments).

In the graphene frame of reference, the optical force and torque are[1, 6]:

FRad = r′2
∫
Ω′ r̂

′ · ⟨TM⟩dΩ′, (1)

GRad = −r′3
∫
Ω′ r̂

′ · ⟨TM⟩ × r̂dΩ′, (2)

where the integration is on the full solid angle, r′ is the radius of a large sphere
surrounding graphene, ⟨TM⟩ is the time averaged Maxwell stress tensor:

⟨TM⟩ =
1

8π
Re

[
n2E′ ⊗ E′∗ +B′ ⊗B′∗ − 1

2
(n2|E′|2 + |B′|2)I

]
, (3)

where ⊗ denotes dyadic product, I is the unit dyadic and n is the refractive
index of water. The �elds that enter Eq.3 are the superposition of incident
and scattered. Thus E′ = E′

I+E′
S and B′ = B′

I+B′
S. When the incident �eld

is a polarized plane wave, the radiation force components along a direction
de�ned by a unit vector v̂ζ are[1]:

FRad ζ = − r′2

16π
Re

∫
Ω′
(r̂′·v̂ζ)[n

2(|E′
S|2+2E′∗

I ·E′
S)+(|B′

S|2+2B′∗
I ·B′

S)] dΩ
′ . (4)

In turn the radiation torque takes the form:
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Figure S1: (a) Local frame of reference attached to the model graphene. (b)
Flake geometry with respect to the optical trap coordinate system.

GRad = −r
′3

8π
Re

∫
Ω′
[n2(r̂′ · E′)E′∗ × r̂′ + (r̂′ ·B′)B′∗ × r̂′]dΩ′ , (5)

where E′ = E′
I + E′

S and B′ = B′
I + B′

S. We expand both E′
I and E′

S in a
series of vector spherical multipole �elds in the form:

E′
I = E0

∑
plm J

(p)
lm(r′, k)W

(p)
lm (êI, k̂I) (6)

E′
S = E0

∑
plm H

(p)
lm(r′, k)A

(p)
lm(êI, k̂I) , (7)

whence the multipole expansions ofB′
I, B

′
S are obtained fromB′ = − i

k
∇×E′.

In Eq. 6 J
(p)
lm denote multipole �elds everywhere regular, and the amplitudes

W
(p)
lm are known. In Eq. 7 H

(p)
lm denote multipole �elds that satisfy the radia-

tion condition at in�nity and the amplitudes A
(p)
lm have arguments êI and k̂I,

to recall that they depend on the polarization and direction of propagation
of the incident �eld, with:

A
(p)
lm =

∑
p′l′m′

S(pp′)
lml′m′W

(p′)
l′m′ (8)

the elements of the graphene transition matrix. These are calculated in a
given frame of reference through the inversion of the matrix of the linear
system obtained by imposing to the �elds boundary conditions across the
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graphene surface. Note that the T-matrix elements are independent both
on propagation and polarization of the incident �eld. Thus they do not
change when the incident �eld is a superposition of plane waves with the
same propagation constant, but di�erent direction of propagation, as for a
focused laser beam in the angular spectrum representation[3, 7].

We model graphene as a planar aggregate of small (3nm) subunit spheres.
Their size and number are chosen to have a transverse size comparable with
the experimental �akes. The light scattering properties of this planar ag-
gregate are regulated by the subunit size parameter[3], x = 2πnr/λ, with
n = 1.33 refractive index of the surrounding medium, r radius of the subunit
sphere, and λ = 830nm trapping wavelength in vacuo. Since the subunit size
parameter is small, x ≈ 0.03 ≪ 1, the light scattering (and optical trapping)
properties of the graphene �ake are well approximated by our model[8].

The dielectric constant of graphene is a highly anisotropic tensor[9]. When
the incident polarization lies in the graphene plane, i.e. orthogonal to the
�ake main axis, the dielectric constant is ε⊥. Whereas for polarization or-
thogonal to the graphene plane, i.e. parallel to its main axis n⃗ (see Fig.
S4), the dielectric constant is ε∥. At the wavelength of our optical trapping
experiments (λ = 830 nm), n⊥ = 3 + i 1.5 and n∥ = 1.694[9].

Stable trapping is achieved when the graphene plane is parallel to yz,
and the long axis is aligned with the optical (z-)axis of the system, as shown
in Fig.4 of the main text. Note that when the polarization axis lies on the
graphene plane (e.g. when parallel to xy or xz), the radiation pressure is so
strong that graphene is pushed out of the trap. This is a consequence of the
large imaginary part of ε⊥. As shown in Fig.4 of the main text, graphene is
stable under small angle rotations around its equilibrium orientation, while
for larger values of ϕ and θ it is expelled by radiation pressure.

Graphene Hydrodynamics

The dynamics of graphene in dispersion encompasses translational and rota-
tional motions. For such anisotropic particles, the viscous drag and torque
are described by anisotropic friction tensors[10, 11] γtij, for translations, and
γrij, for rotations. These are related to the �uid (water) dynamical viscosity
η and particle sizes along its main axis. From HRTEM, our �akes can be
well described as extremely �at ellipsoids with transverse size ∆ much larger
than their height h. We can then exploit the set of analytic solutions for uni-
axial ellipsoids obtained by Perrin[12]. For an oblate ellipsoid with semiaxes
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a < b, c the elliptic integral parameter is[12]:

S =
2√

b2 − a2
arctan

√
b2 − a2

a
(9)

The friction coe�cients[11] of the diagonal matrices, referred to the ellipsoid
main axes, are[12]:

γta = γ∥ = 16πη
a2 − b2

(2a2 − b2)S − 2a
(10)

γtb = γtc = γ⊥ = 32πη
a2 − b2

(2a2 − 3b2)S + 2a
(11)

γra =
32

3
πη

(a2 − b2)b2

2a− b2S
(12)

γrb = γrc =
32

3
πη

a4 − b4

(2a2 − b2)S − 2a
(13)

For SLG, a≪ b = c ≈ ∆/2 and the elliptic integral parameter only depends
on �ake diameter:

S ≈ π/b ≈ 2π/∆ (14)

Thus in the same approximation the hydrodynamic friction coe�cients are
expressed only as a function of the water viscosity and �ake diameter:

γ∥ = 8η∆; γ⊥ =
16

3
η∆; γr =

4

3
η∆3 (15)

In this approximation the rotational friction has the same value for any axis
passing through the graphene center-of-mass, while the translation coe�-
cients parallel and perpendicular to the symmetry axis have a 3/2 ratio.

Our �akes have ∆ ≈ 25nm, η = 0.91mPa s so that γ∥ ∼ 0.182(fN s)/µm,
γ⊥ ∼ 0.121 (fN s)/µm and γr ∼ 1.9 × 10−2fNnms. Thus the mobility co-
e�cients, Γij = γ−1

ij , are Γ∥ ∼ 5.49 µm/(fN s), Γ⊥ ∼ 8.26 µm/(fN s) and
Γr ∼ 52.6 (fN nm s)−1. The uncertainty on these values is linked to that of
the �ake size. Since the size distribution has a ∼40% spread, we expect an
uncertainty on the hydrodynamic parameters of the same order.

Langevin equations

In order to understand the Langevin dynamics of trapped graphene, we ap-
proximate the optical tweezers as an harmonic potential V (xi) =

1
2

∑
i=x,y,z kix

2
i
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with spring constants kx, ky, kz[1, 13]. The rigid motion is described through
the Euler angles ϕ, θ, ψ[14]. We consider graphene as an oblate ellipsoid, so
that ψ = 0 due to rotational symmetry. Thus, the corresponding rotation
matrix from the laboratory coordinates xi to the internal coordinates (aligned
with the principal inertia axes of the ellipsoid) x′i = Rij(ϕ, θ) xi is[14]:

R(ϕ, θ) =

 cosϕ sinϕ 0
− cos θ sinϕ cos θ cosϕ sin θ
sin θ sinϕ − sin θ cosϕ cos θ

 (16)

Furthermore we are interested only in the small angles (ϕ, θ ≪ 1) �uctuations
around equilibrium in the yz-plane (the plane orthogonal to the polarization
axis n⃗, see Fig.S1b). Thus the rotation matrix simpli�es to:

R(ϕ, θ) ≈

 1 ϕ 0
−ϕ 1 θ
0 −θ 1

 (17)

The torque exerted by the optical harmonic potential is the sum of the center
of mass and inner torques. The center of mass coordinates, Xi, are uncorre-
lated stochastic variables. Thus, the time average of crossed terms of the type
XiXj can be neglected, so that they do not give a contribution to the Brow-
nian dynamics[15, 13]. Hence, the only relevant contributions to the angular
�uctuations are the inner torque components Mi(ϕ, θ). These are calculated
by integrating over the ellipsoid mass density distribution ρ(x′i)[13]:

Mi(ϕ, θ) = −
∫
d3x′

ρ(x′i)

m
ϵijlxjklxl

= −
∫
d3x′

ρ(x′i)

m
ϵijl

[
R−1(ϕ, θ)x⃗′

]
j
kl
[
R−1(ϕ, θ)x⃗′

]
l

(18)

where ki are the spring constants of the trapping potential, ϵijl is the Levi-
Civita symbol[14], and m is the mass of the trapped object. Thus, we can
write the torque components using the moments of inertia of the oblate el-
lipsoid I⊥ =

∫
d3x′ρ(x′i) [x

′2 + z′2] and I∥ =
∫
d3x′ρ(x′i) [y

′2 + z′2] (referred to
rotation perpendicular and parallel to x′, the ellipsoid symmetry axis):

Mx ≈ 0 (19)

My ≈ −(kx − kz)
I∥ − I⊥
m

θ = −kθθ (20)

Mz ≈ −(ky − kx)
I∥ − I⊥
m

ϕ = −kϕϕ (21)
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Note that Mx ≈ 0 because we assumed rotational symmetry around x′. A
breaking of this symmetry yields a contribution to the x-component of the
torque that will tend to align the �ake with its longer axis parallel to z (see
Fig.4 of the main text). Thus, for small angles, the torque exerted by the
harmonic potential is independent by translations and the dynamics of the
�ake is described by a set of �ve uncoupled stochastic variables X, Y, Z, ϕ, θ.

In order to calculate the Langevin equations[15] in the lab frame, we
recall that the friction force and torque exerted by the �uid on the �uctuating
particle (Stokes force and torque) are expressed in term of the hydrodynamic
mobilities (obtained as the inverse of Eq.15) so that:

∂tX(t) = −Γ∥kxX(t) + ξx(t)

∂tY (t) = −Γ⊥kyY (t) + ξy(t)

∂tZ(t) = −Γ⊥kzZ(t) + ξz(t) (22)

∂tϕ(t) = −Γrkϕϕ(t) + ξϕ(t)

∂tθ(t) = −Γrkθθ(t) + ξθ(t)

where ξi(t) are random noise sources with zero mean and variance ⟨ξi(t)ξi(t+
τ)⟩ = 2kBTΓiδ(τ) (with δ(τ) Dirac's δ). These lead to �rst order di�eren-
tial equations for the corresponding autocorrelation functions CXiXi

(τ) =
⟨Xi(t)Xi(t + τ)⟩ and Cϕϕ(τ) = ⟨ϕ(t)ϕ(t + τ)⟩, Cθθ(τ) = ⟨θ(t)θ(t + τ)⟩, e.g.
for X(t) the corresponding autocorrelation function is:

∂τCXX(τ) = −Γ∥kxCXX(τ) (23)

that yields an exponential decay:

CXX(τ) =
kBT

kx
e−Γ∥kx|τ | (24)

Thus, the corresponding autocorrelation functions for the �ve stochastic vari-
ables X,Y, Z, ϕ, θ decay with relaxation frequencies:

ωx = Γ∥kx, ωy = Γ⊥ky, ωz = Γ⊥kz

Ωϕ = Γrkϕ, Ωθ = Γrkθ. (25)

Note that we only considered the torque exerted by an uncoupled potential
on a rigid body. Real graphene �akes have anisotropic polarizability that
introduces additional contributions to the componentsMy,Mz of the torque.
Thus, the total optical torque on a tilted �ake might be expected to have a
nonlinear dependence with the angular displacement.
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Correlation functions of the signals.

For trapped graphene the interference pattern in the objective BFP can
change in two cases: a) the �ake is orthogonal to the polarization axis and the
interference changes because of center of mass displacements (X,Y,Z). Thus
in the linear regime the QPD signals are proportional to these displacements.
b) The �ake is tilted by a small angle θ or ϕ, so that the change in BFP in-
terference and QPD signals are proportional (to �rst approximation) to the
(oriented) projections of the �ake on the lab frame axes. Thus, in the limit
of small angles, θ ≪ 1, ϕ ≪ 1, and, under the assumptions discussed above,
the QPD signals can be expressed in the lab frame as a superposition of the
center of mass displacements and angular tilting:

Sx ∼ βx (X − aϕ+ b θ) ; Sy ∼ βy (Y + cϕ) ; Sz ∼ βzZ (26)

where a,b,c are constants that depend on �ake geometry and optical con-
stants. βi are calibration factors that convert the QPD signals in displace-
ments. They can be obtained from the amplitude of the autocorrelation
functions after evaluation of the spring constants by using the equipartition
theorem βi = kiCii(0)/kBT [16, 13, 17]. From Fig.4 of the main text, we
measure βx ≈ 0.07V/µm, βy ≈ 0.069V/µm, βz ≈ 0.27V/µm. These enable
the conversion from V to µm for the BM plots shown in the main text.

The center-of-mass Xi and angular ϕ, θ coordinates are stochastic vari-
ables. The QPD autocorrelation functions Cii(τ) = ⟨Si(t)Si(t+ τ)⟩ are:

Cxx ≈ β2
x

[
CXX + A2Cϕϕ + B2Cθθ

]
(27)

Cyy ≈ β2
y

[
CY Y + C2Cϕϕ

]
(28)

Czz ≈ β2
z CZZ (29)

where we assume center-of-mass and angular �uctuations to be uncorrelated,
thus neglect cross terms of type ⟨Xi(t)ϕ(t+τ)⟩, ⟨Xi(t)θ(t+τ)⟩ and ⟨ϕ(t)θ(t+
τ)⟩. Thus, the QPD autocorrelations give combined information on center-
of-mass and angular �uctuations, and decay with lag time τ as multiple-
exponentials with separated positional and angular relaxation frequencies.

The angular �uctuations yield non-zero cross-correlations of the QPD
signals Cij(τ) = ⟨Si(t)Sj(t+ τ)⟩ (i ̸= j):

Cxy ≈ −βxβyACCϕϕ; Cxz ≈ 0; Cyz ≈ 0 (30)
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Thus, Cxy decays as a single exponential (Eq.22) with relaxation rate corre-
sponding to Ωϕ i.e. directly connected to the optical torque constant kϕ, and
rotational hydrodynamic mobility Γr.

Note that we obtained the QPD signals assuming displacements within
a linear response and with small cross-talk (that we estimate experimentally
to be ∼5%). Equations 27-29 �t well our experimental data with two expo-
nential decays. We have a good understanding of the change of sign in the
cross-correlation functions occurring because of the planar graphene geom-
etry. Note that from our data the θ �uctuations are at the noise level. We
extracted information on kϕ and veri�ed that the graphene displacements in
the trap are within the linear response.

Frame sequence

Figure S2 is a sequence of frames extracted from the Supplementary Movie.
When the laser is on, the �ake is trapped in the focal region of the laser
beam (Fig.S2A). The �ake has dimensions below the wavelength of light
used for imaging. The transverse size results from integration of the interfer-
ence between scattered and unscattered light on the CCD camera, i.e. only a
di�raction limited spot can be imaged. When the �ake is trapped, its Brow-
nian �uctuations occur on a spatial range smaller than the image resolution,
at a rate faster than the acquisition frame rate. Instead, when the laser is
o� (Figs.S2B-I), the �ake is not trapped and changes its dynamical con�gu-
ration at all time scales. Thus, each image from Fig.S2B-I is a snapshot of
the random displacements resulting from the free BM. Finally, in the movie
the laser is turned on and the �ake is trapped again. The change from dark
to bright spot in Figs.S2F,G is due to phase change of the illumination while
the �ake passes through the image plane of the microscope objective.
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